A Thermodynamic Approach to Biological Invasions

A Thermodynamic Approach to Biological Invasions

N. Marchettini
M. Marchi
I. Corsi
E. Tiezzi

Department of Chemistry, University of Siena, Italy

Department of Environmental Sciences “G. Sarfatti”, University of Siena, Italy

9 March 2011
| Citation



True acetylcholinesterase (AChE), an important polymorphic enzyme of the nervous system, was studied to determine the inhibition of transmission of nerve impulses in muscles of the red swamp crayfish, Procambarus clarkii, exposed in vitro to organophosphate (OP) insecticides. The species showed moderate sensitivity to OP insecticides, confirming a factor of its invasive capacity in Mediterranean freshwater and brackish environments. The half maximal inhibition concentration (IC50, M) for AChE vs. acetylthiocholine activity (ASCh, 1 mM) in P. clarkii was compared with that of different tissues of various aquatic invertebrates recently described as invasive and with other non-invasive species. The results suggest that non-invasive species have a lower capacity than invaders to regulate transfer of nerve impulses across synapses, favoring an overall increase in their internal entropy. On the other hand, invasive species seem to have a high capacity to self-organize and produce negentropic internal processes, even though in many cases their strong adaptive capacity can be deleterious for the complexity and equilibrium of the community into which they are introduced, favoring an overall increase in entropy of the ecosystem. The internal complexity of the invasive species considered in this study is discussed in terms of evolutionary thermodynamics with particular emphasis on entropy production and related information.


acetylcholinesterase activity, OP insecticides, entropy, complexity, biotic invasions, evolutionary thermodynamics


[1] Mack, R.N., Simberloff, D., Lonsdale, W.M., Evans, H., Clout, M. & Bazzaz, F.A., Biotic inva-sions: causes, epidemiology, global consequences and control. Ecological Applications, 10(3), pp. 689–710, 2000. doi:10.1890/1051-0761(2000)010[0689:BICEGC]2.0.CO;2

[2] Williamson, M., Biological Invasions. Chapman & Hall: London, 1996.

[3] Grue, C.E., Hart, A.D.M. & Mineau, P., Biological consequences of depressed brain cholines-terase activity in wildlife. Mineau, P., (Ed.) Chemicals in Agriculture. Cholinesterase-inhibiting Insecticides. Elsevier, Amsterdam, pp. 151–209, 1991.

[4] Zinkl, J., Lockhart, W.L., Kenny, S.A. & Ward, F.J., The effects of cholinesterase inhibiting insecticides on fish. Mineau, P., (Ed.) Chemicals in Agriculture. Cholinesterase-inhibiting Insecticides. Elsevier: Amsterdam, pp. 233–254, 1991.

[5] Marchi, M., Corsi, I. & Tiezzi, E., Biological invasions and their threat to ecosystems: two ways to thermodynamic euthanasia. Ecological Modelling, 221(5), pp. 882–883, 2010. doi:10.1016/j.ecolmodel.2009.11.020

[6] Gherardi, F. & Acquistapace, P., Invasive crayfish in Europe: the impact of Procambarus clarkii on the littoral community of a Mediterranean lake. Freshwater Biology, 52, pp. 1249–1259, 2007. doi:10.1111/j.1365-2427.2007.01760.x

[7] Rodríguez, C.F., Bécares, E., Fernández-Aláez, M. & Fernández-Aláez, C., Loss of diversity and degradation of wetlands as a result of introducing exotic crayfish. Biological Invasions, 7, pp. 75–85, 2005. doi:10.1007/s10530-004-9636-7

[8] Corsi, I., Romani, R., Iacocca, A., Bonacci, S., Giovannini, E., Rosi, G. & Focardi, S.E., Insecti-cides resistance in marine invertebrates: an evolutionary adaptation for successful colonization? Dissertation, 15th SETAC European Annual Meeting, Lille, pp. 278, 2005.

[9] Corsi, I., Pastore, A.M., Lodde, A., Palmerini, E., Castagnolo, L. & Focardi, S.E., Potential role of cholinesterases in the invasive capacity of the freshwater bivalve, Anodonta woodiana ( Bivalvia: Unionacea): a comparative study with the indigenous species of the genus, Anodonta sp. Comparative Biochemistry and Physiology C, 145, pp. 413–419, 2007.

[10] Romani, R., Corsi, I., Bonacci, S., Focardi, S.E., De Medico, G.E., De Santis, A., Incarnato, F., Giovannini, E. & Rosi, G., Organophosphate-resistant forms of acetylcholinesterases in two scallops – the Antartic Adamussium colbechi and the Mediterranean Pecten jacobaeus. Comparative Biochemistry and Physiology B, 145, pp. 188–196, 2006. doi:10.1016/j. cbpb.2006.07.005

[11] Wicken, J.S., Information transformations in molecular Evolution. Jounal of Theoretical Biology, 72, pp. 191–204, 1978. doi:10.1016/0022-5193(78)90025-5

[12] Wicken, J.S., A thermodynamic theory of evolution. Journal of Theoretical Biology, 87, pp. 9–23, 1980. doi:10.1016/0022-5193(80)90216-7

[13] Wicken, J.S., An organismic critique of molecular Darwinism. Journal of Theoretical Biology, 117, pp. 545–561, 1985. doi:10.1016/S0022-5193(85)80237-X

[14] Wicken, J.S., Information, entropy and evolution: an agenda for dialogue. Journal of Social and Biological Structure, 9, pp. 275–277, 1986. doi:10.1016/S0140-1750(86)80030-6

[15] Ruesink, J.L., Parker, I.M., Groom, M.J. & Karieva, P.M., Reducing the risk of the non-indigenous species introductions. Bioscience, 45, pp.465–477, 1995. doi:10.2307/1312790

[16] Williamson, M. & Fitter, A., The characters of successful invaders. Biological Conservation, 78, pp. 163–170, 1996. doi:10.1016/0006-3207(96)00025-0

[17] Ellman, G.L., Courtney, K.O., Anders, J.R. & Featherstone, R.M., A new and rapid colorimetric determination of acetylcholinesterases activity. Biochemical Pharmacology, 7, pp. 88–95, 1961. doi:10.1016/0006-2952(61)90145-9

[18] Bredford, M.M., A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analitical Biochemistry, 72, pp. 248–254, 1976. doi:10.1016/0003-2697(76)90527-3

[19] Nardi, F., Frati, F., Romani, R., Rosi, G., Corsi, I. & Focardi, S.E., Organophosphate-resistance acetylcholinesterase in Mytilus galloprovincialis: identification of a resistance Ace gene in cerebral ganglion, gills and adductor muscle. Comparative Biochemistry and Physiology A, 151, pp. S2–S10, 2008.

[20] Talesa, V., Romani, R., Antognelli, C., Giovannini, E. & Rosi, G., Soluble and membranebound acetycholinesterases in Mytilus galloprovincialis (Pelecypoda: Filibranchia) from the northern Adriatic sea. Chemical-Biological Interactions, 134, pp. 151–166, 2001. doi:10.1016/ S0009-2797(01)00152-1

[21] Talesa, V., Romani, R., Antognelli, C., Giovannini, E. & Rosi, G., Different expressions of  organophosphate-resistant acetylcholinesterases in the bivalve mollurk Scapharca inaequivalvis living in three different habitat. Environmental Toxicology and Chemistry, 21(1), pp. 102–108, 2002. doi:10.1002/etc.5620210115

[22] Randall, D., Burggren, W. & French, K., Propagazione e trasmissione dell’informazione nervosa. Fisiologia Animale: meccanismi e adattamenti. Zanichelli, Milano, 2003.

[23] Tiezzi, E., Steps Towards an Evolutionary Physics. WIT Press Publications: Southampton and Boston, 2006.

[24] Fournier, D., Bride, J.M., Hoffmann, F. & Karch, F., Acetylcholinesterase. Two types of modifications confer resistance to insecticide. Journal of Biological Chemistry, 267(20), pp. 14270–14274, 1992.

[25] Smith, G.R.T., Learner, M.A., Slater, F.M. & Foster, J., Habitat features important for the conservation of the native crayfish Austropotamobius pallipes in Britain. Biological Conservation, 

75, pp. 239–246, 1995. doi:10.1016/0006-3207(95)00073-9

[26] Naura, M. & Robinson, M., Principles of using River Habitat Survey to predict the distribution of aquatic species: an example to the native white-clawed crayfish Austropotamobius 

pallipes. Aquatic Conservation: Marine and Freshwater Ecosystems, 8, pp. 515–527, 1998. doi:10.1002/(SICI)1099-0755(199807/08)8:4<515::AID-AQC261>3.0.CO;2-J