Universal Features in the Laws of Growth

Universal Features in the Laws of Growth

P.P. Delsanto A. Gliozzi D. Alexandru Iordache C. Guiot

Department of Physics, Politecnico di Torino, C.so Duca degli Abruzzi 24, 10129 Torino, Italy.

Department of Physics, University “Politechnica” of Bucharest, Splaiul Independent¸ei 313, Bucharest, Romania.

Department of Neuroscience, Università di Torino, C.so Raffaello 30, 10125 Torino, Italy.

Page: 
291-302
|
DOI: 
https://doi.org/10.2495/DNE-V5-N4-291-302
Received: 
N/A
|
Accepted: 
N/A
|
Published: 
1 December 2010
| Citation

OPEN ACCESS

Abstract: 

Computational models and simulations can be powerful tools for gaining an insight into the complex world of the biological mechanisms. Among them the growth processes are perhaps the most challenging and elusive to describe, for the different time scales and species specific features involved. Using a recently proposed technique for the analysis of experimental datasets (the Phenomenological Universalities Approach: PUN), we have succeeded to reproduce, to an excellent level of reliability, many results from experimental ‘in vitro’ and ‘in vivo’ tumor growth studies (e.g. the ‘multipassaged’ tumors described in the paper). Also the description of human growth, with its important implications for monitoring children development and diagnosing metabolic diseases, can be approached using the PUN method.

Keywords: 

best fitting, biological models, complexity, human growth, metabolic diseases, nonlinearity

  References

[1] West, G.B., Brown, J.H. & Enquist, B.J., A general model for ontogenetic growth. Nature, 413, pp. 628–631, 2001. doi:10.1038/35098076

[2] West, G.B. & Brown, J.H., Life’s universal scaling laws. Physics Today, 57, pp. 36–43, 2004. doi:10.1063/1.1809090

[3] Savage, V.M., Deeds, E.J. & Fontana, W., Sizing up allometric scaling theory. PLoS Comput Biol, 4, pp. e1000171, 2008. doi:10.1371/journal.pcbi.1000171

[4] Guiot, C., Degiorgis, P.G., Delsanto, P.P., Gabriele, P. & Deisboeck, T.S., Does tumor growth follow a ‘‘universal law’’? J Theor Biol, 225, pp. 147–151, 2003. doi:10.1016/S0022-5193-

(03)00221-2

[5] Wales, J.K.H., A brief history of the study of human growth dynamics. Ann Human Biol, 25, pp. 175–184, 1998; see also Canessa, E., Modeling of body mass index by Newton’s second law. J Theor Biol, 248, pp. 646–656, 2007.

[6] Bejan, A. & Marden, J.H., Unifying constructal theory for scale effects in running, swimming and flying. J Exp Biol, 209, pp. 238–248, 2006. doi:10.1242/jeb.01974

[7] Delsanto, P.P., Gliozzi, A.S. & Guiot, C., Scaling, growth and ciclicity in biology: a new computational approach. Theoretical Biology and Medical Modelling, 5, p. 5, 2008, doi:10.1186/17424682-5-5. doi:10.1186/1742-4682-5-5

[8] Delsanto, P.P., Gliozzi, A.S. & Bosia, F., A comparison of different instances of phenomenological universalities, Proceedings of the 9th WSEAS International Conference on Mathematics & Computers In Biology & Chemistry, Bucharest, Romania, pp. 36–41, 2008.

[9] Delsanto, P.P., Griffa, M., Condat, C.A., Delsanto, S. & Morra, L., Bridging the gap between mesoscopic and macroscopic models: the case of multicellular tumor spheroids. Phys. Rev. Lett., 94, pp. 148105, 2005. 

[10] Castorina, P., Delsanto, P.P. & Guiot, C., Classification scheme for phenomenological universalities in growth problems in physics and other sciences. Phys Rev Lett, 96, pp. 188701, 2006. doi:10.1103/PhysRevLett.96.188701

[11] Guiot, C., Delsanto, P.P., Carpinteri, A., Pugno, N., Mansury, Y. & Deisboeck, T.S., The dynamic evolution of the power exponent in a universal growth model of tumors. J Theor Biol, 240, pp. 459, 2006. doi:10.1016/j.jtbi.2005.10.006

[12] Gradshteyn, I.S. & Ryzhik, I.M., Tables of Integrals, Series and Products, Academic Press: New York, pp. 56–7, 1980.

[13] Oldham, K., Myland, J. & Spanier, J., An Atlas of Functions, Springer: New York, 2008.

[14] Steel, G.G., Growth Kinetics of Tumors, Clarendon Press: Oxford, 1977.

[15] McCredie, J.A. & Sutherland, R.M., Differences in growth and morphology between the spontaneous C3H mammary carcinoma in the mouse and its syngenic transplants. Cancer, 27, pp. 635– 642, 1971. doi:10.1002/1097-0142(197103)27:3<635::AID-CNCR2820270319>3.0.CO;2-F

[16] Gliozzi, A.S., Guiot, C. & Delsanto, P.P., A new computational tool for the phenomenological analysis of multipassage tumor growth curves. PLoS ONE, 4, e5358, 2009, doi:10.1371/ journal.pone.0005358.

[17] Gompertz, B., On the nature of the function expressive of the law of human mortality and a new mode of determining life contingencies. Phil Trans R Soc, 115, pp. 513–585, 1825. doi:10.1098/rstl.1825.0026

[18] Guiot, C., Pugno, N., Delsanto, P.P. & Deisboeck, T.S., Physical aspects of cancer invasion. Phys. Biol., 4, P1–P6, 2007, doi:10.1088/1478-3975/4/4/P01.

[19] De Vladar, H.P., Density-dependence as a size-independent regulatory mechanism, J Theor Biol, 238, pp. 245–256, 2006. doi:10.1016/j.jtbi.2005.05.014

[20] Delsanto, P., Gliozzi, A.S., Bruno, C.L.E., Pugno, N. & Carpinteri, A., Scaling laws and fractality in the framework of a phenomenological approach. Chaos, Solitons & Fractals, ISSN: 0960-0779, 2008.

[21] Lozy, M.E., A critical analysis of the double and triple logistic growth curves. Ann Hum Biol, 5, pp. 389–394, 1978. doi:10.1080/03014467800003021

[22] Devenport, C.B., Human growth curve. J Gen Physiol, 10, pp. 205–216, 1926. doi:10.1085/ jgp.10.2.205

[23] Butler, G.E., McKie, M. & Ratcliffe, S.G., The cyclical nature of prepubertal growth. Ann Hum Biol, 17, pp. 177–198, 1990. doi:10.1080/03014469000000952

[24] (a) http://embriology.med.unsw.edu.au/wwwhuman/Stages/Cstages.htm, (b) http://embriology. med.unsw.edu.au/wwwhuman/Stages/Cst800.jpg, (c) http://embriology.med.unsw.edu.au/ wwwhuman/Hum.10wk/Images/fetalweight.jpg.