Effects of Different Types of Input Waveforms in Patient-specific Right Coronary Atherosclerosis Hemodynamics Analysis

Effects of Different Types of Input Waveforms in Patient-specific Right Coronary Atherosclerosis Hemodynamics Analysis

S.I. Bernad E.S. Bernad T. Barbat V. Albulescu R. Susan-Resiga

Romanian Academy - Timisoara Branch, Romania.

University of Medicine and Pharmacy “Victor Babes” Timisoara, Romania.

Department of Hydraulic Machinery, “Politehnica” University of Timisoara, Romania.

| |
| | Citation



Accurate fluid mechanics models are important tools for predicting the flow field in the coronary artery for understanding the relationship between hemodynamics and the initiation and progression of atherosclerosis. The purpose of this paper is to asses non-invasively hemodynamic parameters such as disturbed flows, pressure distribution and wall shear stress with computational fluid dynamics (CFD) in human right coronary artery (RCA) using patient-specific data from in vivo computed tomographic (CT) angiography, using two different pulsatile input waveforms. In order to produce a realistic three-dimensional model of the RCA anatomy, CT-datasets were acquired by a four-row-detector CT-scanner. Digital files in Digital Imaging and Communications in Medicine (DICOM) file format, containing cross-sectional information were then imported to CFD software package for reconstruction. The numerical analysis examines closely the effect of a different input waveforms model on the hemodynamic characteristics such as secondary flow, flow separation and wall shear stress in the multiple stenosed RCA.


hemodynamics, input velocity, wall shear stress, stenotic arteries, blood flow distorsion, secondary flow, flow separation.


[1] Buchanan, J.R. & Kleinstreuer, C., Simulation of particle-hemodynamics in a partially occluded artery segment with implications to the initiation of microemboli and secondary stenoses.  Journal of Biomechanical Engineering, 120, pp. 446–454, 1998. doi:10.1115/1.2798013

[2] Ciu, J.-J., Wang, D.L., Chien, S., Skalak, R. & Usami S., Effects of disturbed flow on endothelial cells. Journal of Biomechanical Engineering, 120, pp. 2–8, 1998. doi:10.1115/1.2834303

[3] Marsahall, I., Zhao, S., Papathanasopoulou P., Hoskins P. & Yun Xu X., MRI and CFD studies of pulsatile flow in healtly and stenosed carotid bifurcation models. Journal of Biomechanics, 

37, pp. 679–687, 2004. doi:10.1016/j.jbiomech.2003.09.032

 [4] Sun, N., Torii R., Wood, N.B., Hughes A.D., Thom S.A.M., & Xu Y.X., Computaional modeling of LDL and albumin transport in an in vivo CT image-based human right coronary artery. 

Journal of Biomechanical Engineering, 131, pp. 1–9, 2009. doi:10.1115/1.3005161

[5] Frauenfelder, T., Boutsianis, E., Schertler T., et al., In-vivo flow simulation in coronary arteries based on computed tomography datasets: feasibility and initial results. Eur Radiol, 17(5), pp. 1291–1300, 2007. doi:10.1007/s00330-006-0465-1

[6] Liu, B., The influences of stenosis on the downstream flow pattern in curved arteries. Medical Enginnering & Physics, 29, pp. 868–876, 2007. doi:10.1016/j.medengphy.2006.09.009

[7] Sherwin, S.J. & Blackburn, HM., Three-dimensional instabilities and transition of steady and pulsatile axisymmetric stenotic flows. Journal Fluid Mechanics, 533, pp. 297–327, 2005. doi:10.1017/S0022112005004271

[8] Dodds, S.R., The haemodynamics of asymmetric stenoses. European Journal of Vascular 

Endovascular Surgery, 24, pp. 332–337, 2002. doi:10.1053/ejvs.2002.1729

[9] Zeng, D., Boutsianis, E., Ammann, M., Boomsma, K., Wildermuth, S. & Poulikakos, D., A study of the compliance of a right coronary artery and its impact on wall shear stress.  Journal of Biomechanical Engineering, 130, pp. 041014–11, 2008. doi:10.1115/1.2937744

[10] Truskey, G.A., Barber, K.M., Robey, T.C., Lauri, A.O. & Combs, M.P., Characterization of a sudden expansion flow chamber to study the response of endothelium to flow recirculation. Journal of Biomechanical Engineering, 117, pp. 203–210, 1995. doi:10.1115/1.2796002

[11] Gibson, C.M., Diaz, L., Kandarpa, K., et al., Relation of vessel wall shear stress to atherosclerosis progression in human coronary arteries. Arteriosclerosis Thrombosis, 13(2), pp. 310–315, 1993.

[12] Tateshima, S., Tanishita, K. & Vinuela, F., Hemodynamics and cerebrovascular disease. Surgical Neurology, 70, pp. 447–453, 2008. doi:10.1016/j.surneu.2008.07.010

[13] Hyun, S., Kleinstreuer, C. & Archie, J.P. Jr, Computational particle-hemodynamics analysis and geometric reconstruction after carotid endarterectomy. Computers in Biology and Medicine, 31, pp. 365–384, 2001. doi:10.1016/S0010-4825(01)00007-5

[14] Spicer, S.A. & Taylor, C.A., Simulation ased Medical Planning for Cardiovascular Disease: Visualization System Foundations. Computer Aided Surgery, 5, pp. 82–89, 2000. 

doi:10.3109/10929080009148874, doi:10.1002/1097-0150(2000)5:2<82::AID-IGS2>3.3.CO;2-X 

[15] Bernad, S.I., Bernad, E. & Mihalas,, G.I., Numerical investigation of blood flow in the arterial stenosis, Proc. of the Medical Informatics Europe - MIE2003, eds Baund, R., Fieschi, M., Le Beux, P.& Ruch, P., IOS Press: Amsterdam, The Netherlands, pp. 3–8, 2003.

[16] Rathish Kumar, B.V., Yamaghuchi, T., Liu, H. & Himeno, R., A numerical study of an unsteady laminar flow in a doubly constricted 3D vessel. International Journal for Numerical Methods in Fluids, 38, pp. 1159–1176, 2002. doi:10.1002/fld.191

[17] Shahcheraghi, N., Dwyer, H.A., Cheer, A.Y., Barakat A.I. & Rutaganira T., Unsteady and treedimensional simulation of blood flow in the human aortic arch. Journal of Biomechanical Engineering, 124, pp. 378–387, 2002. doi:10.1115/1.1487357

[18] Yung, C.N., De Witt, K.J., Subramanian, S., Afjeh, A.A. & Keith, T.G., Three-dimensional pulsatile flow through a bifurcation. International Journal of Numerical Methods for Heat & Fluid Flow, 7(8), pp. 843–862, 1997. doi:10.1108/09615539710193010

[19] Eliasziw, M., Smith, R.F., Singh, N., et al., Further comments on the measurement of  carotid stenosis from angiograms: North American Symptomatic Carotid Endarterectomy Trial (NASCET) Group. Stroke, 25, pp. 2445–49, 1994.

[20] Rothwell, P.M., Eliasziw, M., Gutnikov, S.A., et al., Analysis of pooled data from the randomized controlled trials of endarterectomy for symptomatic carotid stenosis. Lancet, 361, pp. 107–16, 2003. doi:10.1016/S0140-6736(03)12228-3

[21] Kiviniemi, T.O., Saraste, M., Koskenvuo, J.W., et al., Coronary artery diameter can be assessed reliably with transthoracic echocardiography. American Journal Physiology. Heart Circulatory Physiology, 286, pp. H1515–H1520, 2004.

[22] FLUENT 6.3 User’s Guide, Ansys Fluent Incorporated, 2006.

[23] Johnston, B.M., Johnston, P.R., Corney, S., Kilpatrick, D., Non-Newtonian blood flow in  human right coronary arteries: transient simulations. Journal of Biomechanics, 39, pp. 1116–1128, 2005. doi:10.1016/j.jbiomech.2005.01.034

[24] Stroud, J.S., Berger, S.A. & Saloner, D., Numerical analysis of flow through a severely stenotic carotid artery bifurcation. Journal of Biomechanical Engineering, 124, pp. 9–20, 2002. doi:10.1115/1.1427042

[25] Sherwin, S.J. & Blackburn, H.M., Three-dimensional instabilities and transition of steady and pulsatile axisymmetric stenotic flows. Journal of Fluid Mechanics, 533, pp. 297–327, 2005. 


[26] Torii, R., Wood, N.B., Hadjiloizou, N., Dowsey, A.W., Wright, A.R., Hughes, A.D., Davies, J., Francis, DP., Mayet, J., Yang, G-Z., Thom, S.A., & Yun, X.X., Differences in coronary artery haemodynamics due to changes in flow and vascular geometry after percutaneous coronary intervention. Heart, 94, pp. A1–A4, 2008.

[27] Giddens, D.P., Zarins, C.K., & Glagov, S., Response of arteries to near wall fluid dynamic behavior. Applied Mechanics Review, 43(2), pp. S98–S102, 1990.

[28] Ku, D., Giddens, D., Zarins, C., & Glagov, S., Pulsatile flow and atherosclerosis in the human carotid bifurcation: positive correlation between plaque and low and oscillating shear stress. Arteriosclerosis, 5, pp. 293–302, 1985.

[29] Liu, Y., Lai, Y., Nagaraj, A., Kane, B., Hamilton, A., Greene, R., McPherson, D.D., & Chandran, K. B., Pulsatile flow simulation in arterial vascular segments with intravascular ultrasound images. Medical Engineering& Physics, 23(8), pp. 583–595, 2001. doi:10.1016/ S1350-4533(01)00088-1

[30] Siebes, M, Verhoeff, B-J., Meuwissen, M., de Winter, R.J.,  Spaan, J.A.E., & Piek, J.J., Singlewire pressure and flow velocity measurement to quantify coronary stenosis hemodynamics and effects of percutaneous interventions. Circulation, 109, pp. 756–762, 2004. doi:10.1161/01. CIR.0000112571.06979.B2

[31] Pijls, N.H.J., De Bruyne, B., Jan Willem Bech, G., Liistro, F., Heyndrickx, G.R., Bonnier, H.J.R.M & Koolen J.J., Coronary pressure measurement to assess the hemodynamic significance of serial stenoses within one coronary artery: validation in humans. Circulation, 102, pp. 2371–2377, 2000.

[32] Zeng, D., Ding, Z, Friedman, M.H., Ethier, C.R., Effects of cardiac motion on right coronary artery hemodynamics. Annals of Biomedical Engineering, 31, pp. 420–429, 2003. doi:10.1114/1.1560631

[33] Qiu, Y. & Tarbell, J.M., Numerical simulation of pulsatile flow in a compliant curved tube model of a coronary artery. Journal of Biomechanical Engineering, 122, pp. 77–85, 2000. doi:10.1115/1.429629

[34] Santamarina, A., Weydahl, E., Siegel, J.M. Jr., & Moore, J.E. Jr., Computational analysis of flow in a curved tube model of the coronary arteries: effects of time-varying curvature. Annals of Biomedical Engineering, 26, pp. 944–954, 1998. doi:10.1114/1.113

[35] Delfino, A., Stergiopulos, N., Moore, J.E. Jr., & Meister, J.J., Residual strain effects on the stress field in a thick-wall finite-element model of the human carotid bifurcation. Journal of Biomechanics, 30, pp. 777–786, 1997. doi:10.1016/S0021-9290(97)00025-0

[36] Fry, D.L., Acute vascular endothelial changes associated with increased blood velocity gradients.  Circulation Research, 22, pp. 165–197, 1968.

[37] Nerem, R.M., Vascular fluid mechanics, the arterial wall, and atherosclerosis. Journal of  Biomechanical. Engineering, 114, pp. 274–282, 1992.