The Supramolecular Structure of Water: Nmr Studies

The Supramolecular Structure of Water: Nmr Studies

E. Tiezzi M. Catalucci N. Marchettini

Department of Chemistry, University of Siena, Italy

Page: 
10-20
|
DOI: 
https://doi.org/10.2495/DNE-V5-N1-10-20
Received: 
N/A
| |
Accepted: 
N/A
| | Citation

OPEN ACCESS

Abstract: 

A total of 174 NMR Proton Relaxation time experiments were performed over a period of 20 years using different instruments in several universities. Namely T1 and T2 (the spin-lattice relaxation time and the spinspin relaxation time, respectively) were measured in different samples of water: distilled, homeopathic, spring water and water treated with electromagnetic fi elds. All samples were deoxygenated and particular care was devoted to avoid paramagnetic impurities. According to classical magnetic resonance literature T1 = T2 = 3.6 s. We found surprising results in all the water samples, T1 being two or three times greater than T2. The results have been explained in light of recent physical theories such as coherence domains, quantum electrodynamics (QED), thermodynamics of irreversible processes (TIP) and Pollack’s water exclusion zone (EZ). The formation of a supramolecular structure of water is suggested. The results are related to the small dimension of the NMR tubes and the role of surfaces.

Keywords: 

NMR proton relaxation times, QED, thermodynamics of irreversible processes, water, water exclusion zone

  References

[1] Carrington, A. & McLachlan A.D., Introduction to Magnetic Resonance, with Applications to Chemistry and Chemical Physics, Harper & Row Publisher: New York, Evanston and London, 1967.

[2] Gadian, D.G., NMR and Its Applications to Living Systems, Oxford University Press: Oxford, 1995.

[3] Freeman, R., Hill, H.D.W., Tomlinson, B.L. & Hall L.D., Dipolar contribution to NMR spin-lattice relaxation of protons. Journal of Chemical Physics, 61, pp. 4466–4473, 1974. doi:10.1063/1.1681764

[4] Carr, H.Y. & Purcell E.M., Effects of diffusion on free precession in NMR experiments. Physical Review, 94, pp. 630, 1954. doi:10.1103/PhysRev.94.630

[5] Meiboom, S. & Gill, D., Compensation for pulse imperfections in Carr-Purcell NMR  experiments. Review of Scientific Instruments, 29, pp. 688, 1958.

[6] Kleinberg, R., Encyclopedia of Nuclear Magnetic Resonance, eds D.M. Grant and R.K. Harris, Wiley: New York, 1995.

[7] McDonald, P.J., Stray field magnetic resonance imaging. Progress in Nuclear Magnetic Resonance Spectroscopy, 30, pp. 69, 1997. doi:10.1016/S0079-6565(96)01035-7

[8] Elia, V., Elia, L., Marchettini, N., Napoli, E., Niccoli, M. & Tiezzi, E. Physico-chemical properties of aqueous extremely diluted solutions in relation to ageing. Journal of Thermal 

Analysis and Calorimetry, 93(3), pp. 1003–1011, 2008. doi:10.1007/s10973-007-8843-8

[9] Elia, V., Napoli, E., Niccoli, M., Marchettini, N. & Tiezzi, E., New Physico-chemical properties of extremely dilute aqueous solutions. A conductivity study at 25°C in relation to ageing. Journal of Solution Chemistry, 37(1), pp. 85–96, 2008. doi:10.1007/s10953-007-9215-5 doi:10.1007/s10953-008-9345-4

[10] Jørgensen, S.E., Fath, B.D., Bastianoni, S., Marques, J.C., Müller, F., Nielsem, S.N., Patten, B.C., Tiezzi, E., Ulanowicz, R.E., A New Ecology: Systems Perspective, Elsevier: Amsterdam, 2007.

[11] Rey, L., Thermoluminescence of ultra-high dilutions of lithium chloride and sodium chloride. Physica A, 323, pp. 67–74, 2003. doi:10.1016/S0378-4371(03)00047-5 [12] Rey, L., Low temperature thermoluminescence. Nature, 391, p. 418, 1988.

[13] Lobyshev, V., I., Water is a sensor to weak forces including electromagnetic fields of low intensity. Electromagnetic Biology and Medicine, 24, pp. 449–461, 2005.

[14] Pollack, G.H., Cells, Gels and the Engines of Life, Ebner & Sons: Seattle, WA, USA, 2001.

[15] Piccardi, G., The Chemical Basis of Medical Climatology, Springer, 1962.

[16] Szent Gyorgy A., Bioenergetics, Nauka: Moscow, 1960.

[17] Huang, C., Wikfeldt, K.T., Tokushima, T., Nordlund, D., Harada, Y., Bergmann, U., Niebuhr, M., Weiss, T.M., Horikawa, Y., Leetmaa, M., Ljungberg, M.P., Takahashi, O., Lenz, A., Ojamäe, L., Lyubartsev, A.P., Shin, S., Pettersson, L.G.M. & Nilsson, A., The inhomogeneous structure of water at ambient conditions. PNAS, 106, pp.15214–15218, 2009. doi:10.1073/ pnas.0904743106

[18] Tiezzi, E. & Marchettini, N., The origins of irreversibility. International Journal of Ecodynamics, 2(3), pp. 165–169, 2007. doi:10.2495/ECO-V2-N3-165-169

[19] Tiezzi, E., NMR evidence of a supramolecular structure of water. Annali di Chimica, 93(4), pp. 471–476, 2003.

[20] Zheng, J., Wei-Chun Chin, Khijniak, E., Khijniak, E. Jr. & Pollack, G.H., Surfaces and interfacial water: Evidence that hydrophilic surfaces have long-range impact. Advances in Colloid and Interface Science, 127, pp. 19–27, 2006, and papers quoted therein. doi:10.1016/j. cis.2006.07.002

[21] Pollack, G.H., Water, energy and life: fresh views from the water’s edge. International Journal of Design & Nature and Ecodynamics, 5(1), pp. 27–29, 2010.

[22] Arani R., Bono I., Del Giudice E. & Preparata G., QED coherence and the thermodynamics of water. International Journal of Modern Physics B, 9, pp. 1813–1841, 1995. doi:10.1142/ S0217979295000744

[23] Del Giudice, E., Pulselli, R. M., Formation of dissipative structures in liquid water. International Journal of Design & Nature and Ecodynamics, 5(1), pp. 21–26, 2010.

[24] Del Giudice E., Pulselli R. & Tiezzi E., Thermodynamics of Irreversible Processes and Quantum Field Theory: an Interplay for the Understanding of Ecosystem Dynamics. Ecological Modelling, 220, pp. 1874–1879, 2009. doi:10.1016/j.ecolmodel.2009.04.035

[25] Del Giudice, E., Preparata, G. & Vitiello, G., Water as a free electric dipole laser. Physical Review Letters, 61, pp. 1085–1088, 1998. doi:10.1103/PhysRevLett.61.1085

[26] Tiezzi, E., Cecconi, G. & Marchettini, N., Confined Ontic Open Systems. International  Journal of Design & Nature and Ecodynamics, 5(1), pp. 3–9, 2010.

[27] Marchettini, N., Del Giudice, E., Voeikov, V.L. & Tiezzi, E., Water: a medium where dissipative structures are produced by a coherent dynamics. Journal of Theoretical Biology, submitted.