Animal Camouflage: Biology Meets Psychology, Computer Science and Art

Animal Camouflage: Biology Meets Psychology, Computer Science and Art

I.C. Cuthill T.S. Troscianko 

School of Biological Sciences, University of Bristol, UK

Department of Experimental Psychology, University of Bristol, UK

30 September 2009
| Citation



Animal camouflage provides some of the most striking examples of the workings of natural selection, whether employed defensively to reduce predation risk, or offensively to minimise alerting prey. While the general benefi ts of camouflage are obvious, understanding the precise means by which the viewer is fooled represent a challenge to a biologist, because camouflage is an adaptation to the eyes and mind of another animal. Therefore, a full understanding of the mechanisms of camoufl age requires an interdisciplinary investigation of the perception and cognition of non-human species, involving the collaboration of biologists, neuroscientists, perceptual psychologists and computer scientists. Modern computational neuroscience grounds the principles of Gestalt psychology, and the intuition of generations of artists, in specific mechanisms that can be tested. We review the various forms of animal camoufl age from this perspective, illustrated by the recent upsurge of experimental studies of long-held, but largely untested, theories of defensive colouration.


animal colouration, antipredator behaviour, camoufl age, colour vision, crypsis, defensive colouration


[1] Darwin, E., Zoonomia, J. Johnson: London, 1794 (reprinted by Project Gutenberg www.

[2] Wallace, A.R., Darwinism. An Exposition of the Theory of Natural Selection with Some of its Applications, Macmillan & Co: London, 1889.

[3] Poulton, E.B., The Colours of Animals: Their Meaning and Use. Especially Considered in the Case of Insects, 2nd edn, The International Scientifi c Series, vol. LXVIII, Kegan Paul, Trench Trübner & Co. Ltd.: London, 1890.

[4] Beddard, F.E., Animal Coloration; An Account of the Principle Facts and Theories Relating to the Colours and Markings of Animals, 2nd edn, Swan Sonnenschein: London, 1895.

[5] Endler, J.A., Progressive background matching in moths, and a quantitative measure of crypsis. Biological Journal of the Linnean Society, 22(3), pp. 187–231, 1984. doi:10.1111/j.1095-8312.1984. tb01677.x

[6] Merilaita, S., Tuomi, J. & Jormalainen, V., Optimization of cryptic coloration in heterogeneous habitats. Biological Journal of the Linnean Society, 67(2), pp. 151–161, 1999. doi: 10.1111/ j.1095-8312.1999.tb01858.x

[7] Bond, A.B. & Kamil, A.C., Visual predators select for crypticity and polymorphism in virtual prey. Nature, 415, pp. 609–613, 2002. doi:10.1038/415609a

[8] Thayer, A.H., The law which underlies protective coloration. The Auk, 13, pp. 477–482, 1896.

[9] Thayer, G.H., Concealing-Coloration in the Animal Kingdom: An Exposition of the Laws of Disguise Through Color and Pattern: Being a Summary of Abbott H. Thayer’s Discoveries, Macmillan: New York, 1909.

[10] Cott, H.B., Adaptive Coloration in Animals, Methuen & Co. Ltd.: London, 1940.

[11] Rolls, E.T. & Deco, G., Computational Neuroscience of Vision, Oxford University Press: Oxford, 2002.

[12] Bennett, A.T.D., Cuthill, I.C. & Norris, K.J., Sexual selection and the mismeasure of color. American Naturalist, 144(5), pp. 848–860, 1994.  doi:10.1086/285711

[13] Endler, J.A., On the measurement and classifi cation of colour in studies of animal colour patterns. Biological Journal of the Linnean Society, 41(4), pp. 315–352, 1990. doi: 10.1111/j.10958312.1990.tb00839.x

[14] Endler, J.A., Signals, signal conditions, and the direction of evolution. American Naturalist, 139(Suppl.), pp. S125–S153, 1992. doi:10.1086/285308

[15] Guilford, T. & Dawkins, M.S., Receiver psychology and the evolution of animal signals. Animal Behaviour, 42, pp. 1–14, 1991. doi:10.1016/S0003-3472(05)80600-1

[16] Ryan, M.J. & Keddy-Hector, A., Directional patterns of female mate choice and the role of sensory biases. American Naturalist, 139, pp. S4–S35, 1992. doi:10.1086/285303

[17] Endler, J.A. & Basolo, A.L., Sensory ecology, receiver biases and sexual selection. Trends in Ecology and Evolution, 13(10), pp. 415–420, 1998. doi:10.1016/S0169-5347(98)01471-2

[18] ten Cate, C. & Rowe, C., Biases in signal evolution: learning makes a difference. Trends in Ecology and Evolution, 22(7), pp. 380–387, 2007. doi:10.1016/j.tree.2007.03.006

[19] Behrens, R.R., False Colors: Art, Design and Modern Camoufl age, Bobolink Books: Dysart, Iowa, 2002.

[20] Behrens, R.R., Camoufl age, art and Gestalt. North American Review, 265(4), pp. 8–18, 1980.

[21] Behrens, R.R., Visual art and camoufl age. Leonardo, 11(3), pp. 203–204, 1978. doi:10.2307/1574143

[22] Cuthill, I.C., Color Perception, in: Bird Coloration. Mechanisms and Measurement, eds G.E. Hill & K.J. McGraw, vol. 1, Harvard University Press: Cambridge MA, pp. 3–40, 2006.

[23] Cuthill, I.C., Partridge, J.C., Bennett, A.T.D., Church, S.C., Hart, N.S. & Hunt, S., Ultraviolet vision in birds. Advances in the Study of Behaviour, 29, pp. 159–214, 2000. doi:10.1016/S00653454(08)60105-9

[24] Surridge, A.K., Osorio, D. & Mundy, N.I., Evolution and selection of trichromatic vision in primates. Trends in Ecology & Evolution, 18(4), pp. 198–205, 2003. doi:10.1016/S0169-5347-


[25] Vorobyev, M., Coloured oil droplets enhance colour discrimination. Proceedings of the Royal Society of London B, 270(1521), pp. 1255–1261, 2003. doi:10.1098/rspb.2003.2381

[26] Vorobyev, M., Osorio, D., Bennett, A.T.D., Marshall, N.J. & Cuthill, I.C., Tetrachromacy, oil droplets and bird plumage colours. Journal of Comparative Physiology A, 183, pp. 621–633, 1998. doi:10.1007/s003590050286

[27] Lovell, P.G., Tolhurst, D.J., Parraga, C.A., Baddeley, R., Leonards, U. & Troscianko, J., Stability of the color-opponent signals under changes of illuminant in natural scenes. Journal of the Optical Society of America A, 22(10), pp. 2060–2071, 2005. doi:10.1364/JOSAA.22.002060

[28] Lovell, P.G., Tolhurst, D.J., Parraga, C.A., Baddeley, R.J., Leonards, U., Troscianko, J. & Troscianko, T., Opponent channel responses to changes in the illuminant of natural scenes for primates and birds. Perception, 34, pp. 59, 2005.

[29] Osorio, D., Ruderman, D.L. & Cronin, T.W., Estimation of errors in luminance signals encoded by primate retina resulting from sampling of natural images with red and green cones. Journal of the Optical Society of America A, 15(1), pp. 16–22, 1998. doi:10.1364/JOSAA.15.000016

[30] Osorio, D. & Vorobyev, M., Colour vision as an adaptation to frugivory in primates. Proceedings of the Royal Society of London B, Biological Sciences, 263, pp. 593–599, 1996. doi:10.1098/rspb.1996.0089

[31] Jones, C.D. & Osorio, D., Discrimination of orientated visual textures by poultry chicks. Vision Research, 44, pp. 83–89, 2004. doi:10.1016/j.visres.2003.08.014

[32] Ghim, M.M. & Hodos, W., Spatial contrast sensitivity of birds. Journal of Comparative Physiology A, 192(5), pp. 523–534, 2006. doi:10.1007/s00359-005-0090-5

[33] Troscianko, T., Benton, C.P., Lovell, P.G., Tolhurst, D.J. & Pizlo, Z., Camoufl age and visual perception. Philosophical Transactions of the Royal Society of London B, 364(1516), pp. 449–461, 2009. doi:10.1098/rstb.2008.0218

[34] Bond, A.B. & Kamil, A.C., Spatial heterogeneity, predator cognition, and the evolution of color polymorphism in virtual prey. Proceedings of the National Academy of Sciences of the United States of America, 103, pp. 3214–3219, 2006. doi:10.1073/pnas.0509963103

[35] Pietrewicz, A.T. & Kamil, A.C., Visual detection of cryptic prey by blue jays (Cyanocitta cristata). Science, 195, pp. 580–582, 1977. doi:10.1126/science.195.4278.580

[36] Pietrewicz, A.T. & Kamil, A.C., Search image formation in the Blue Jay (Cyanocitta cristata). Science, 204, pp. 1332–1333, 1979. doi:10.1126/science.204.4399.1332

[37] Duncan, J. & Humphreys, G.W., Visual search and stimulus similarity. Psychological Review, 96(3), pp. 433–458, 1989. doi: 10.1037/0033-295X.96.3.433

[38] Brady, M.J. & Kersten, D., Bootstrapped learning of novel objects. Journal of Vision, 3(6), pp. 413–422, 2003. doi:10.1167/3.6.2

[39] Behrens, R.R., The theories of Abbott H. Thayer: father of camoufl age. Leonardo, 21, pp. 291–296, 1988. doi:10.2307/1578658

[40] Behrens, R.R., Art & Camoufl age, North American Review: Cedar Falls, Iowa, 1981.

[41] Behrens, R.R., The role of artists in ship camoufl age during World War I. Leonardo, 32, pp. 53–59, 1999. doi:10.1162/002409499553000

[42] Newark, T., Newark, Q. & Borsarello, J.F., Brassey’s Book of Camoufl age, Brassey’s (UK) Ltd.: Littlehampton, 1996.

[43] Newark, T. & Miller, J., Camoufl age, Thames & Hudson: London, 2007.

[44] Church, S.C., Bennett, A.T.D., Cuthill, I.C. & Partridge, J.C., Avian ultraviolet vision and its implications for insect protective coloration, in: eds H.V. Emden & M. Rothschild, Insect and Bird Interactions, Intercept Press: Andover, pp. 165–184, 2004.

[45] Church, S.C., Bennett, A.T.D., Cuthill, I.C. & Partridge, J.C., Ultraviolet cues affect the foraging behaviour of blue tits. Proceedings of the Royal Society of London B, 265, pp. 1509–1514, 1998. doi:10.1098/rspb.1998.0465

[46] Harvey, P.H. & Pagel, M.D., The Comparative Method in Evolutionary Biology, Oxford University Press: Oxford, 1991.

[47] Andersson, M., Sexual Selection, Princeton University Press: Princeton, NJ, 1994.

[48] Stuart-Fox, D. & Moussalli, A., Selection for social signalling drives the evolution of chameleon colour change. PLoS Biology, 6(1), pp. e25, 2008. doi:10.1371/journal.pbio.0060025

[49] Hanlon, R., Cephalopod dynamic camoufl age. Current Biology, 17(11), pp. R400–R404, 2007. doi:10.1016/j.cub.2007.03.034

[50] Hanlon, R.T., Forsythe, J.W. & Joneschild, D.E., Crypsis, conspicuous, mimicry and polyphenism as antipredator defences of foraging octopuses on Indo-Pacifi c coral reefs, with a method of quantifying crypsis from video tapes. Biological Journal of the Linnean Society, 66, 

pp. 1–22, 1999. doi:10.1111/j.1095-8312.1999.tb01914.x

[51] Endler, J.A., An overview of the relationships between mimicry and crypsis. Biological Journal of the Linnean Society, 16(1), pp. 25–31, 1981. doi:10.1111/j.1095-8312.1981. tb01840.x

[52] Endler, J.A., Interactions between predators and prey, in: eds J.R. Krebs & N.B. Davis, Behavioural Ecology: an Evolutionary Approach, 3rd edn, Blackwell: Oxford, pp. 169–196, 1991.

[53] Endler, J.A., Frequency-dependent predation, crypsis and aposematic coloration. Philosophical Transactions of the Royal Society of London B, 319(1196), pp. 505–523, 1988. doi:10.1098/ rstb.1988.0062

[54] Cook, L.M., Changing views on melanic moths. Biological Journal of the Linnean Society, 69(3), pp. 431–441, 2000. doi:10.1111/j.1095-8312.2000.tb01215.x

[55] Coyne, J.A., Of moths and men: intrigue, tragedy and the peppered moth. Nature, 418(6893), pp. 19–20, 2002. doi:10.1038/418019a

[56] Ruxton, G.D., Sherratt, T.N. & Speed, M.P., Avoiding Attack, Oxford University Press: Oxford, 2004. doi:10.1093/acprof:oso/9780198528609.001.0001

[57] Stevens, M. & Merilaita, S., Animal camoufl age: current issues and new perspectives. Philosophical Transactions of the Royal Society of London B, 364, pp. 423–427, 2009. 


[58] Stevens, M. & Merilaita, S., Defi ning disruptive coloration and distinguishing its functions. 

Philosophical Transactions of the Royal Society of London B, 364(1516), pp. 481–488, 2009. doi:10.1098/rstb.2008.0216

[59] Merilaita, S. & Lind, J., Background-matching and disruptive coloration, and the evolution of cryptic coloration. Proceedings of the Royal Society B, 272, pp. 665–670, 2005. doi:10.1098/ rspb.2004.3000

[60] Stevens, M., Cuthill, I.C., Párraga, C.A. & Troscianko, T., The effectiveness of disruptive coloration as a concealment strategy, in: eds J.-M. Alonso, et al., Visual Perception (Part 2): Progress in Brain Research, vol. 155, Elsevier: Amsterdam, pp. 49–65, 2006.

[61] Vorobyev, M. & Osorio, D., Receptor noise as a determinant of colour thresholds. Proceedings of the Royal Society of London B, 265, pp. 351–358, 1998. doi:10.1098/rspb.1998.0302

[62] Endler, J.A. & Meilke, P.W.J., Comparing color patterns as birds see them. Biological Journal of the Linnean Society, 86, pp. 405–431, 2005. doi:10.1111/j.1095-8312.2005.00540.x

[63] Lovell, P.G., Párraga, C.A., Troscianko, T., Ripamonti, C. & Tolhurst, D., Evaluation of a multiscale color model for visual difference prediction. ACM Transactions on Applied Perception, 3, pp. 155–178, 2006. doi:10.1145/1166087.1166089

[64] Merilaita, S., Lyytinen, A. & Mappes, J., Selection for cryptic coloration in a visually heterogeneous habitat. Proceedings of the Royal Society B, 268(1479), pp. 1925–1929, 2001. doi:10.1098/rspb.2001.1747

[65] Houston, A.I., Stevens, M. & Cuthill, I.C., Animal camoufl age: compromise or specialize in a 2 patch-type environment? Behavioral Ecology, 18, pp. 769–775, 2007. doi:10.1093/beheco/arm039

[66] Ruxton, G.D., Speed, M.P. & Kelly, D.J., What, if anything, is the adaptive function of countershading? Animal Behaviour, 68, pp. 445–451, 2004. doi:10.1016/j.anbehav.2003.12.009

[67] Rowland, H.M., From Abbott Thayer to the present day: what have we learned about the function of countershading? Philosophical Transactions of the Royal Society of London B, 364(1516), pp. 519–527, 2009.

[68] Kiltie, R.A., Countershading: universally deceptive or deceptively universal. Trends in Ecology & Evolution, 3(1), pp. 21–23, 1988.

[69] Speed, M.P., Kelly, D.J., Davidson, A.M. & Ruxton, G.D., Countershading enhances crypsis with some bird species but not others. Behavioral Ecology, 16, pp. 327–334, 2004.

[70] Edmunds, M. & Dewhirst, R.A., The survival value of countershading with wild birds as predators. Biological Journal of the Linnean Society, 51(4), pp. 447–452, 1994.

[71] Rowland, H.M., Cuthill, I.C., Harvey, I.F., Speed, M.P. & Ruxton, G.D., Can’t tell the caterpillars from the trees: countershading enhances survival in a woodland. Proceedings of the Royal Society B, 275(1651), pp. 2539–2545, 2008.

[72] Rowland, H.M., Speed, M.P., Ruxton, G.D., Edmunds, M., Stevens, M. & Harvey, I.F., Countershading enhances cryptic protection: an experiment with wild birds and artifi cial prey. Animal Behaviour, 74, pp. 1249–1258, 2007.

[73] Cuthill, I.C., Stevens, M., Sheppard, J., Maddocks, T., Párraga, C.A. & Troscianko, T.S., Disruptive coloration and background pattern matching. Nature, 434, pp. 72–74, 2005.

[74] Stevens, M., Cuthill, I.C., Windsor, A.M.M. & Walker, H.J., Disruptive contrast in animal camoufl age. Proceedings of The Royal Society B, 273(1600), pp. 2433–2438, 2006.

[75] Stevens, M. & Cuthill, I.C., Disruptive coloration, crypsis and edge detection in early visual processing. Proceedings of the Royal Society B, 273(1598), pp. 2141–2147, 2006.

[76] Merilaita, S., Crypsis through disruptive coloration in an isopod. Proceedings of the Royal Society B, 265(1401), pp. 1059–1064, 1998.

[77] Schaefer, H.M. & Stobbe, N., Disruptive coloration provides camoufl age independent of background matching. Proceedings of the Royal Society B, 273(1600), pp. 2427–2432, 2006.

[78] Fraser, S., Callahan, A., Klassen, D. & Sherratt, T.N., Empirical tests of the role of disruptive coloration in reducing detectability. Proceedings of the Royal Society B, 274(1615), pp. 1325–1331, 2007.

[79] Endler, J.A., Disruptive and cryptic coloration. Proceedings of the Royal Society B, 273, pp. 2425–2426, 2006.

[80] Osorio, D. & Vorobyev, M., Photoreceptor spectral sensitivities in terrestrial animals: adaptations for luminance and colour vision. Proceedings of the Royal Society of London B, 272, pp. 1745–1752, 2005.

[81] Cuthill, I.C., Hiby, E. & Lloyd, E., The predation costs of symmetrical cryptic coloration. Proceedings of the Royal Society B, 273, pp. 1267–1271, 2006.

[82] Cuthill, I.C., Stevens, M., Windsor, A.M.M. & Walker, H.J., The effects of pattern symmetry on detection of disruptive and background-matching coloration. Behavioral Ecology, 17(5), pp. 828–832, 2006.

[83] Merilaita, S. & Lind, J., Great tits (Parus major) searching for artifi cial prey: implications for cryptic coloration and symmetry. Behavioral Ecology, 17, pp. 84–87, 2006.

[84] Osorio, D., Symmetry versus crypsis. Trends in Ecology and Evolution, 9(9), pp. 346–346, 1994.

[85] Swaddle, J.P., Limits to length asymmetry detection in starlings: implications for biological signalling. Proceedings of the Royal Society of London B, 266(1426), pp. 1299–1303, 1999.

[86] Cuthill, I.C. & Székely, A., Coincident disruptive coloration. Philosophical Transactions of the Royal Society of London B, 364, pp. 489–496, 2009.

[87] Levi, D.M. & Klein, S.A., Vernier acuity, crowding, and amblyopia. Vision Research, 25, pp. 979–991, 1985.

[88] Pelli, D.G., Palomares, M. & Majaj, N.J., Crowding is unlike ordinary masking: distinguishing feature integration from detection. Journal of Vision, 4, pp. 1136–1169, 2004.

[89] Stevens, M.S., Winney, I.S., Cantor, A. & Graham, J., Outline and surface disruption in animal camoufl age. Proceedings of the Royal Society B, 276, pp. 781–786, 2009.

[90] Stevens, M., Yule, D.H. & Ruxton, G.D., Dazzle coloration and prey movement. Proceedings of the Royal Society B, 275, pp. 2639–2643, 2008.

[91] Irwin, D.E. & Zelinsky, G.J., Eye movements and scene perception: memory for things observed. Perception & Psychophysics, 64(6), pp. 882–895, 2002.

[92] Tatler, B.W., Gilchrist, I.D. & Land, M.F., Visual memory for objects in natural scenes: from fi xations to object fi les. Quarterly Journal of Experimental Psychology A, 58(5), pp. 931–960, 2005.

[93] Neider, M.B. & Zelinsky, G.J., Searching for camoufl aged targets: effects of target-background similarity on visual search. Vision Research, 46(14), pp. 2217–2235, 2006.

[94] Dimitrova, M., Stobbe, N., Schaefer, H.M. & Merilaita, S., Concealed by conspicuousness: 

distractive prey markings and backgrounds. Proceedings of the Royal Society B, in press, 276, pp. 1905–1910, 2009.

[95] Stevens, M., Graham, J., Winney, I.S. & Cantor, A., Testing Thayer’s hypothesis: can camoufl age work by distraction? Biology Letters, 4, pp. 648–650, 2008.

[96] Wachtler, T., Lee, T.W. & Sejnowski, T.J., Chromatic structure of natural scenes. Journal of the Optical Society of America A, 18(1), pp. 65–77, 2001.

[97] Sekuler, A.B. & Bennett, P.J., Visual neuroscience: resonating to natural images. Current Biology, 11(18), pp. R733–R736, 2001.

[98] Tolhurst, D.J. & Tadmor, Y., Discrimination of spectrally blended natural images: optimisation of the human visual system for encoding natural images. Perception, 29(9), pp. 1087–1100, 2000.