Excess of Social Activity Reduces the Responsiveness of Swarms

Excess of Social Activity Reduces the Responsiveness of Swarms

David Mateo Roland Bouffanais 

Singapore University of Technology and Design, Somapah Road, Singapore, Singapore

1 October 2016
| Citation



Social interaction increases significantly the collective action and operation of swarming systems. However, a growing body of empirical results reveals limitations in the number of social links in natural swarms, thereby suggesting possibly detrimental effects associated with excessive social activity. We study the consequences that such excess has on the responsiveness of a swarm facing dynamic perturbations. Using a classical model of collective motion, we show that the capacity of a swarm to perform actions critical to its survival peaks for a number of social links much smaller than the maximum possible number. This relationship between social activity, responsiveness and predator avoidance capacity presents a plausible picture of how natural selection could favor organisms that self-limit their sociality, as is common in many taxa. These results have important implications for the design of swarm robotics systems.


collective behaviors, consensus dynamics, sociality, swarming systems


[1] Bouffanais, R., Design and Control of Swarm Dynamics, Springer: Heidelberg, 2016. http://dx.doi.org/10.1007/978-981-287-751-2

[2] Krause, J. & Ruxton, G.D., Living in Groups. Oxford Series in Ecology and Evolution, Oxford University Press: Oxford, U.K., 2002.

[3] Attanasi, A., Cavagna, A., Del Castello, L., Giardina, I., Grigera, T.S., Jeli´c, A., Melillo, S., Parisi, L., Pohl, O., Shen, E. & Viale, M., Information transfer and behavioural inertia in starling flocks. Nature Physics, 10, pp. 691–696, 2014. http://dx.doi.org/10.1038/nphys3035

[4] Herbert-Read, J.E., Buhl, J., Hu, F., Ward, A.J.W. & Sumpter, D.J.T., Initiation and spread of escape waves within animal groups. Royal Society Open Science, 2, p. 140355, 2015.


[5] Komareji, M. & Bouffanais, R., Resilience and controllability of dynamic collective behaviors. 

PLoS ONE, 8, p. e82578, 2013. http://dx.doi.org/10.1371/journal.pone.0082578

[6] Holme, P. & Saramaki, J., Temporal networks. Physics Report, 519, pp. 97–125, 2012. http://dx.doi.org/10.1016/j.physrep.2012.03.001

[7] Ballerini, M., Cabibbo, N., Candelier, R., Cavagna, A., Cisbani, E., Giardina, I., Lecomte, V., Orlandi, A., Parisi, G., Procaccini, A., Viale, M. & Zdravkovic, V., Interaction ruling animal collective behavior depends on topological rather than metric distance: evidence from a field study. Proceedings of the National Academy of Science USA, 105, pp. 1232–1237, 2008. http://dx.doi.org/10.1073/pnas.0711437105

[8] Komareji, M. & Bouffanais, R., Controllability of a swarm of topologically interacting autonomous agents. International Journal Complex Systems in Science, 3, pp. 11–19, 2013.

[9] Shang, Y. & Bouffanais, R., Influence of the number of topologically interacting neighbors on swarm dynamics. Scientific Report, 4, p. 4184, 2014.


[10] Ballerini, M., Cabibbo, N., Candelier, R., Cavagna, A., Cisban, E., Gia rdina, I., Orlandi, A., Parisi, G., Procaccini, A., Viale, M. & Zdravkovic, V., An empirical study of large, naturally occurring starling flocks: a benchmark in collective animal behaviour. Animal Behaviour, 76, pp. 201–215, 2008. http://dx.doi.org/10.1016/j.anbehav.2008.02.004

[11] Attanasi, A., Cavagna, A., Del Castello, L., Giardina, I., Melillo, S., Parisi, L., Pohl, O., Rossaro, B., Shen, E., Silvestri, E. & Viale, M., Finite-size scaling as a way to probe near-criticality in natural swarms. Physical Review Letters, 113, p. 238102, 2014. http://dx.doi.org/10.1103/PhysRevLett.113.238102

[12] Gordon, D.M., Paul, R.E. & Thorpe, K., What is the function of encounter patterns in ant colonies? Animal Behaviour, 45, pp. 1083–1100, 1993. http://dx.doi.org/10.1006/anbe.1993.1134

[13] Kawashima, H. & Egerstedt, M., Manipulability of leader–follower networks with the rigidlink approximation. Automatica, 50, pp. 695–706, 2014.


[14] Centola, D., The spread of behavior in an online social network experiment. Science, 329(5996), pp. 1194–1197, 2010. http://dx.doi.org/10.1126/science.1185231

[15] Young, G.F., Scardovi, L., Cavagna, A., Giardina, I. & Leonard, N.E., Starling flock networks manage uncertainty in consensus at low cost. PLoS Computational Biology, 9(1), p. e1002894, 2013.


[16] Vicsek, T. & Zafeiris, A., Collective motion. Physics Reports, 517, pp. 71–140, 2012.


[17] Vicsek, T., Cziro´k, A., Ben-Jacob, E., Cohen, I. & Shochet, O., Novel type of phase-transition in a system of self-driven particles. Physical Review Letters, 75, pp. 1226–1229, 1995. http://dx.doi.org/10.1103/PhysRevLett.75.1226

[18] Olfati-Saber, R., Fax, J.A. & Murray, R.M., Consensus and cooperation in networked multiagent systems. Proceedings of the IEEE, 95(1), pp. 215–233, 2007. http://dx.doi.org/10.1109/JPROC.2006.887293

[19] Dusenbery, D.B., Sensory Ecology: How Organisms Acquire and Respondto Information. W.H. Freeman and Co.: New York, 1992.

[20] Mateo, D., Kuan, Y.K. & Bouffanais, R., Excess of social behavior reduces the capacity to respond to perturbations, 2015, arXiv:1509.08157 [nlin.AO].

[21] Sumpter, D., Buhl, J., Biro, D. & Couzin, I., Information transfer in moving animal groups. Theory in Biosciences, 127, pp. 177–186, 2008.


[22] Sumpter, D.J.T., Collective Animal Behavior, Princeton University Press: Princeton, NJ, 2010.