Clinical Important Hemodynamic Characteristics for Serial Stenosed Coronary Artery

Clinical Important Hemodynamic Characteristics for Serial Stenosed Coronary Artery

S.I. Bernad E.S. Bernad A.F. Totorean M.L. Craina I. Sargan

Romanian Academy—Timisoara Branch, Centre for Fundamental and Advanced Technical Research, Romania

University of Medicine and Pharmacy “Victor Babes” Timisoara, University Clinic “Bega”, Romania

University Politehnica Timisoara, Department of MMUT, Romania

Page: 
97-113
|
DOI: 
https://doi.org/10.2495/DNE-V10-N2-97-113
Received: 
N/A
| |
Accepted: 
N/A
| | Citation

OPEN ACCESS

Abstract: 

Effects of serial stenosis on coronary hemodynamics are investigated in the human right coronary artery (RCA) by blood flow analysis. The 3D reconstruction of the geometry of the stenosed coronary artery uses the multislice computerized tomography serial images method. Results of the numerical analysis present the hemodynamic characteristics of the serial stenosed coronary artery throughout the flow separation, pressure drop and wall shear stress. The pressure loss associated with recirculation region created in the vicinity of each constriction was found to be large. In two stenoses the corresponding pressure gradients are around 30 mmHg and correspond to the stenosis with fractional flow reserve—FFR < 0.7 (value associated to the severe stenosis). Distal to the stenosis, flow is associated with fluctuations in the wall shear stress and vorticity. Both FFR and CFD analysis help identify intermediate lesions that require intervention and reduce unnecessary procedures with potential complications.

Keywords: 

fractional flow reserve, hemodynamics, pressure drop, right coronary artery, serial stenosis, wall shear stress

  References

[1] Bluestein, D., Gutierrez, C., Londono, M. & Schoephoerster M., Vortex shedding in steady flow through a model of an arterial stenosis and its relevance to mural platelet deposition.  Annals of Biomedical Engineering, 27, pp. 763–773, 1999. doi: http://dx.doi.org/10.1114/1.230

[2] Stroud, J., Berger, S. & Saloner, D., Influence of stenosis morphology on flow through severely stenotic vessels: implications for plaque rupture. Journal of Biomechanics, 33, pp. 443–455, 

2000. doi: http://dx.doi.org/10.1016/s0021-9290(99)00207-9

[3] Morton, J.K., Curriculum in Interventional Cardiology: Coronary Pressure and Flow Measurements in the Cardiac Catheterization Laboratory. Catheterization and Cardiovascular Interventions, 54, pp. 378–400, 2001. doi: http://dx.doi.org/10.1002/ccd.1303

[4] Bernhard, S., Transient integral boundary layer method to simulate entrance flow conditions in one-dimensional arterial blood flow, PhD Thesis, 2006, http://ediss.uni-goettingen.de/ handle/11858/00-1735-0000-0006-B443-0?show=full&locale-attribute=en.

[5] Bernhard S., Möhlenkamp S. & Tilgner, A., Transient integral boundary layer method to calculate the translesional pressure drop and the fractional flow reserve in myocardial bridges, BioMedical Engineering OnLine, 5(42), 2006. doi: http://dx.doi.org/10.1186/1475-925x-5-42

[6] Marques, K.M.J. & Westerhof, N., Characteristics of the flow velocity-pressure  gradient relation in the assessment of stenoses: an in vitro study. Netherlands Heart Journal, 16, pp. 156–162, 2008. doi: http://dx.doi.org/10.1007/bf03086137

[7] Kang1, M.J., Ji, H-S. & Lee S.J., In-vitro study on haemodiluted blood flow in a sinusoidal microstenosis. Proc. ImechE Part H: J. Engineering in Medicine, 224, pp. 17–25, 2010. doi: http://dx.doi.org/10.1243/09544119jeim644

[8] Younis, B.A. & Berger, S.A., A turbulence model for pulsatile arterial flows. Journal of Biomechanical Engineering, 126, pp. 578–584, 2004. doi: http://dx.doi.org/10.1115/1.1798032

[9] Damodaran, V., Rankin, G.W. & Zhang, Z., Numerical study of steady laminar flow through tubes with multiple constrictions using curvilinear co-ordinates. International Journal for 

 Numerical Methods in Fluids, 23, pp. 1021–1041, 1996. doi: http://dx.doi.org/10.1002/

(sici)1097-0363(19961130)23:10<1021::aid-fld449>3.0.co;2-d 

[10] Johnston, B.M., Johnston, P.R., Corney, S. & Kilpatrick, D., Non-Newtonian blood flow in  human right coronary arteries: transient simulations. Journal of Biomechanics, 39, pp. 1116–1128, 2005. doi: http://dx.doi.org/10.1016/j.jbiomech.2005.01.034

[11] Sabbah, H.N. & Stein, P.D., Hemodynamics of multiple versus single 50 percent coronary arterial stenoses. American Journal of Cardiology, 50, pp. 276–280, 1982. doi: http://dx.doi. org/10.1016/0002-9149(82)90177-1

[12] Johnston, P.R. & Kilpatrick, D., Mathematical modeling of paired arterial stenoses, Proceeding Computers in Cardiology, pp. 229–232, 1990. doi: http://dx.doi.org/10.1109/cic.1990.144202

[13] Bernad S.I., Totorean A., Bernad E.S. & Susan-Resiga R., Particle motion in coronary  serial stenoses, WIT Transaction on Biomedicine and Health, 17, WIT Press, 2013, ISSN: 1743-3525, doi: http://dx.doi.org/10.2495/bio130151 

[14] Bertolotti, C., Qin, Z., Lamontagne, B., Durand, L-G., Soulez, G. & Cloutier G., Influence of multiple stenoses on echo-Doppler functional diagnosis of peripheral arterial disease: a numerical and experimental study. Annals of Biomedical Engineering, 34, pp. 564–574, 2006. doi: http://dx.doi.org/10.1007/s10439-005-9071-7

[15] Pijls, N.H.J., De Bruyne, B., Jan Willem Bech, G., Liistro, F., Heyndrickx, GR, Bonnier, H.J.R.M. & Koolen J.J., Coronary pressure measurement to assess the hemodynamic significance of serial stenoses within one coronary artery: validation in humans. Circulation, 102, pp. 2371–2377, 2000. doi: http://dx.doi.org/10.1161/01.cir.102.19.2371

[16] Bernad, S.I., Bernad, E., Barbat, T., Albulescu, V. & Susan-Resiga, R., Effects of different types of input waveforms in patient-specific right coronary atherosclerosis hemodynamics analysis. International Journal of Design & Nature and Ecodynamics, 5(2), pp. 1–18, 2010. doi: http://dx.doi.org/10.2495/dne-v5-n2-142-159 

[17] Dodds, S.R., The haemodynamics of asymmetric stenoses. European Journal of Vascular  Endovascular Surgery, 24, pp. 332–337, 2002. doi: http://dx.doi.org/10.1053/ejvs.2002.1729

[18] Liu, B., The influences of stenosis on the downstream flow pattern in curved arteries. Medical Enginnering & Physics, 29, pp. 868–876, 2007. doi: http://dx.doi.org/10.1016/j.medengphy.2006.09.009

[19] Staikov, I.N., Arnold, M., Mattle, H.P., Remonda, L., Sturzenegger, M., Baumgartner, R.W. & Schroth, G., Comparison of the ECST, CC, and NASCET grading methods and ultrasound for assessing carotid stenosis. Journal of Neurology, 247, pp. 681–686, 2000. doi: http://dx.doi. org/10.1007/s004150070110

[20] Rothwell, P.M., Eliasziw, M., Gutnikov, S.A.,  Fox, A.J., Taylor, D.W., Mayberg, M.R.,  Warlow, C.P., Barnett, H.J.; Carotid Endarterectomy Trialists’ Collaboration, Analysis of pooled data from the randomized controlled trials of endarterectomy for symptomatic carotid stenosis. Lancet, 361, pp. 107–16, 2003. doi: http://dx.doi.org/10.1016/s0140-6736(03)12228-3

[21] FLUENT 6.3 User’s Guide 2006. Ansys Fluent Incorporated.

[22] Mohammadi, B., 3D Analysis of blood flow in consecutive stenoses of coronary artery. Journal of Basic and Applied Scientific Research, 2(7), pp. 6730–6739, 2012. doi: http://dx.doi. org/10.1161/01.cir.90.6.3123

[23] Banerjee, M.K., Ganguly, R. & Datta, A., Effect of pulsatile flow waveform and womersley number on the flow in stenosed arterial geometry. ISRN Biomathematics, Article ID 853056, 17 pages, 2012. doi: http://dx.doi.org/10.5402/2012/853056

[24] Molla, M.M. & Paul, M.C., LES of non-Newtonian physiological blood flow in a model of arterial stenosis. Medical Engineering and Physics, 34 (8), pp. 1079–1087, 2012. doi: http:// dx.doi.org/10.1016/j.medengphy.2011.11.013

[25] Ghalichi, F. & Deng, X., Turbulence detection in a stenosed artery bifurcation by n umerical simulation of pulsatile blood flow using the low-Reynolds number turbulence model.  Biorheology, 40, pp. 637–654, 2003.

[26] Mittal, R., Simmons, S.P. & Udaykumar, H.S., Application of large-eddy simulation to the study of pulsatile flow in a modeled arterial stenosis. Journal of Biomechanical Engineering, 123, pp. 325–332, 2001. doi: http://dx.doi.org/10.1115/1.1385840

[27] Rayz, V.T., Berger, S.A. & Salomer, D., Transitional flow in arterial fluid dynamics. Computer Methods in Applied Mechanics and Engineering, 196, pp. 3043–3048, 2007. doi: http://dx.doi. org/10.1016/j.cma.2006.10.014

[28] Tan, F.P.P., Soloperto, G., Bashford, S., Wood, H.B., Thom, S., Hughes, A. & Xu, X.Y.,  Analysis of flow disturbance in a stenosed carotid artery bifurcation using two-equation transitional and turbulence models. Journal of Biomechanical Engineering, 130, 061008–1, 2008. doi: http:// dx.doi.org/10.1115/1.2978992

[29] Banerjee, R.K., Back, L.H., Back, M.R. & Cho, Y.I., Physiological flow simulation in residual human stenoses after coronary angioplasty. ASME Journal of Biomechanical Engineering, 122, pp. 310–320, 2000. doi: http://dx.doi.org/10.1115/1.1287157

[30] Zeng, D., Boutsianis, E., Ammann, M., Boomsma, K., Wildermuth, S. & Poulikakos, D., A study of the compliance of a right coronary artery and its impact on wall shear stress.  Journal of Biomechanical Engineering, 130, pp. 041014–11, 2008. doi: http://dx.doi.org/10.1115/1.2937744

[31] Torii, R., et al., Differences in coronary artery haemodynamics due to changes in flow and vascular geometry after percutaneous coronary intervention. Heart, 94, pp. A1–A4, 2008.

[32] Di Mario, C., Meneveau, C., Gil, R., Jaegere, P., Feyter, P.J., Slager, C., Roelandt, J.R.T.C. & Serruys, P.W., Maximal blood flow velocity in severe coronary stenoses measured with a doppler guidewire, Limitations for the application of the continuity equation in the assessment of stenosis severity. American Journal of Cardiology, 71, pp. 54D–61D, 1993. doi: http://dx.doi. org/10.1016/0002-9149(93)90134-x

[33] Li, L.X., Beech-Brandt, J.J., John, L.R., Hoskins, P.R. & Easson, W.J., Numerical analisys of pulsatile blood flow and vessel wall mechanics in different degrees of stenoses. Journal of Biomechanics, 40, pp. 3715–3724, 2007. doi: http://dx.doi.org/10.1016/j.jbiomech.2007.06.023

[34] Siebes, M., Verhoeff, B-J., Meuwissen, M., de Winter, J., Jos, R., Spaan A.E. & Piek, J.J., Single-Wire Pressure and Flow Velocity Measurement to Quantify Coronary Stenosis Hemodynamics and Effects of Percutaneous Interventions. Circulation, 109, pp. 756–762, 2004. doi: http://dx.doi.org/10.1161/01.cir.0000112571.06979.b2

[35] Guha, A., Transport and deposition of particles in turbulent, and laminar flow. Annual Review of Fluid Mechanics, 40, pp. 311–341, 2008. doi: http://dx.doi.org/10.1146/annurev.fluid.40.111406.102220

[36] Chatzizisis, Y.S., Coskun, A.U., Jonas, M., Edelman, E.R., Feldman, C.L. & Stone, P.H., Role of endothelial shear stress in the natural history of coronary atherosclerosis and vascular  remodeling, molecular, cellular, and vascular behavior. JACC, 49(25), pp. 2379–93, 2007. doi: http://dx.doi.org/10.1016/j.jacc.2007.02.059

[37] Cheng, C., Tempel, D., van Haperen, R., van der Baan, A., Grosveld, F., Daemen, M.J.A.P., Krams, R. & Crom, R., Atherosclerotic lesion size and vulnerability are determined by patterns of fluid shear stress. Circulation, 113, pp. 2744–2753, 2006. doi: http://dx.doi.org/10.1161/ circulationaha.106.658302

[38] Sun, N., Wood, N.B., Hughes, A.D., Thom, S.A.M. & Xu, X.Y., Fluid-wall modelling of mass transfer in an axisymmetric stenosis: effects of shear-dependent transport properties. Annals of Biomedical Engineering, 34(7), pp. 1119–1128, 2006. doi: http://dx.doi.org/10.1007/s10439006-9144-2

[39] Sho, E., Nanjo, H., Sho, M., Kobayashi, M., Komatsu, M., Kawamura, K., Xu, C., Zarins, C.K. & Masuda, H., Arterial enlargement, tortuosity, and intimal thickening in response to sequential exposure to high and low wall shear stress. Journal of Vascular Surgery, 39, pp. 601–612, 2004. doi: http://dx.doi.org/10.1016/j.jvs.2003.10.058

[40] Donohue, T.J., Kern, M.J., Aguirre, F.V., Bach, R.G., Wolford, T., Bell, C.A., Segal, J.,  Assessing the hemodynamic significance of coronary artery stenoses: analysis of translesional pressure flow velocity relationships in patients. Journal of the American College of Cardiology, 22, pp. 449–458, 1993. doi: http://dx.doi.org/10.1016/0735-1097(93)90049-7

[41] Kern, M.J., Lerman, A., Bech, J.W., De Bruyne, B., Eeckhout, E., Fearon, W.F., Higano, S.T., Lim, M.J., Meuwissen, M., Piek, J.J., Pijls, N.H.J., Siebes M. & Spaan, J.A.E., Physiological Assessment of Coronary Artery Disease in the Cardiac Catheterization Laboratory: A Scientific Statement from the American Heart Association Committee on Diagnostic and Interventional Cardiac Catheterization, Council on Clinical Cardiology. Circulation, 114, pp. 1321–1341, 

2006. doi: http://dx.doi.org/10.1161/circulationaha.106.177276

[42] Lim, M.J. & Kern, M.J., Coronary Pathophysiology in the Cardiac Catheterization Laboratory. Current Problems in Cardiology, 31, pp. 493–550, 2006. doi: http://dx.doi.org/10.1016/j. cpcardiol.2006.04.002

[43] Tobis, J., Azarbal, B. & Slavin, L., Assessment of Intermediate Severity Coronary Lesions in the Catheterization Laboratory. Journal of the American College of Cardiology, 49, pp. 839–848, 2007. doi: http://dx.doi.org/10.1016/j.jacc.2006.10.055

[44] Zeng, D., Ding, Z., Friedman, M.H. & Ethier, C.R., Effects of cardiac motion on right coronary artery hemodynamics. Annals of Biomedical Engineering, 31, pp. 420–429, 2003. doi: http:// dx.doi.org/10.1114/1.1560631

[45] Qiu, Y. & Tarbell, J.M., Numerical simulation of pulsatile flow in a compliant curved tube model of a coronary artery. Journal of Biomechanical Engineering, 122, pp. 77–85, 2000. doi: http://dx.doi.org/10.1115/1.429629