Review on the Influence of Biological Deterioration on the Surface Properties of Building Materials: Organisms, Materials, and Methods

Review on the Influence of Biological Deterioration on the Surface Properties of Building Materials: Organisms, Materials, and Methods

Chiara Ferrari Giulia Santunione Antonio Libbra Alberto Muscio Elisabetta Sgarbi Cristina Siligardi Giovanni S. Barozzi

Department of Engineering ‘Enzo Ferrari’, University of Modena and Reggio Emilia, Italy

Department of Life Science, University of Modena & Reggio Emilia, Italy

Page: 
21-39
|
DOI: 
https://doi.org/10.2495/DNE-V10-N1-21-39
Received: 
N/A
| |
Accepted: 
N/A
| | Citation

OPEN ACCESS

Abstract: 

A strong attention is recently paid to surface properties of building materials as these allows controlling solar gains of the building envelope and overheating of buildings and urban areas. In this regard, deterioration phenomena due to biological aggression can quickly damage solar-reflecting roof surfaces and thus increase sharply solar gains, discomfort, air-conditioning costs and waterproofing degradation. The same deterioration problem has deleterious effect on cultural heritage, ruining its huge historic and artistic value. This work is aimed at providing an overview on the different organisms that affect the surface of most used building materials, to support the design of new building materials with long-lasting surface properties and to find a way to preserve cultural heritage. Artificial ageing is the long-term aim of this investigation, in which what in nature happens after months or years is compressed in a very short time by forcing the growth of microorganisms through a strict control on the different conditioning factors. Both natural and artificial ageing are eventually outlined in the last part of this work to provide a comprehensive idea of what is necessary to study in a complete way biological ageing protocols on building materials. Several characterization techniques are also introduced to analyse the influence of microorganisms on the surface of different building materials.

Keywords: 

artificial ageing, building surfaces, natural ageing, solar reflectance biological aggression

  References

[1] Sleiman, M., Kirchstetter, T.W.P., Berdahl, P., Gilbert, H.E., Quelen, S., Marlot, L., Preble, C., Chen, S., Montalbano, A., Rosseler, O., Akbari, H., Levinson, R. & Destaillats, H., Soiling of building envelope surfaces and its effect on solar reflectance – Part II: development of an accelerated aging method for roofing materials. Solar Energy Materials and Solar Cells, 122, pp. 271–281, 2014. doi: http://dx.doi.org/10.1016/j.solmat.2013.11.028

[2] Gaylarde, C. & Morton, M., Biodeterioration of mineral materials. Enc. of Environmental Microbiology, Wiley: New York, NY, pp. 515–528, 2002. doi: http://dx.doi. org/10.1002/0471263397.env135

[3] Tran, H.T., Govin, A., Guyonnet, R., Grosseau, P., Lors, C., Garcia-Diaz, E., Damidot, D., Devès, O. & Ruot, B., Influence of the intrinsic characteristics of mortars on biofouling by Klebsormidium flaccidum. International Biodeterioration and Biodegradation, 70, pp. 31–39, 

2012. doi: http://dx.doi.org/10.1016/j.ibiod.2011.10.017

[4] Tomaselli, L., Lamenti, G., Bosco, M. & Tiano, P., Biodiversity of photosynthetic microorganisms dwelling on stone monuments. International Biodeterioration and Biodegradation, 46, pp. 251–258, 2000. doi: http://dx.doi.org/10.1016/s0964-8305(00)00078-0

[5] Gómez-Alarcón, G., Muñoz, M.L. & Flores, M., Excretion of organic acids by fungal strains isolated from decayed sandstone. International Biodeterioration and Biodegradation, 34, pp. 169–180, 1995. doi: http://dx.doi.org/10.1016/0964-8305(94)90006-x

[6] Ortega-Calvo, J.J., Hernandez-Marine, M. & Saiz-Jimenez, C., Experimental strategies for investigating algal deterioration of stone. Proc. 7th International Congress on Deterioration and Conservation of Stone, Lisbon, eds. J. Delgado, F. Enriques, F. Telmo pp. 541–549, 1992. [7] Characklis, W.G. & Marshall, K.C., Biofilms, Wiley: New York, 1990. doi: http://dx.doi. org/10.1016/0167-7799(91)90057-o

[8] Gaylarde, C.C. & Gaylarde, P.M., A comparative study of the major microbial biomass of biofilms on exteriors of buildings in Europe and Latin America. International Biodeterioration and Biodegradation, 55, pp. 131–139, 2005. doi: http://dx.doi.org/10.1016/j.ibiod.2004.10.001

[9] John, D.M., Algal growth on buildings: a general review and methods of treatment. Biodeterioration Abstracts, 2, pp. 81–102, 1988.

[10] Barberousse, H., Etude de la diversité des algues et des cyanobactéries colonisant les revêtements de façade en France et recherche des facteurs favorisant leur implantation (PhD thesis), Muséum National d’Histoire Naturelle, Paris, France, 2006.

[11] Tran, T.H., Govin, A., Guyonnet, R., Grosseau, P., Lors,C., Garcia-Diaz, E., Damidot, D., Devès, O. & Ruot, B., Influence of the intrinsic characteristics of mortars on their biofouling by pigmented organisms: comparison between laboratory and field scale experiments. 

International Biodeterioration and Biodegradation, 86, pp. 334–342, 2014. doi: http://dx.doi. org/10.1016/j.ibiod.2013.10.005

[12] Ariño, X., Gomez-Bolea, A. & Saiz-Jimenez, C., Lichens on ancient mortar. International Biodeterioration and Biodegradation, 40, pp. 217–224, 1997. doi: http://dx.doi.org/10.1016/ s0964-8305(97)00036-x

[13] Wee, Y.C. & Lee, K.B., Proliferation of algae on surfaces of buildings in Singapore. International Biodeterioration Bulletin, 16, pp. 113–117, 1980.

[14] Young, M.E., Biological growth and their relationship to the physical and chemical characteristics of sandstones before and after cleaning (PhD Thesis), The Robert Gordon University, Aberdeen, Scotland, 1997.

[15] Guillitte, O., Bioreceptivity: a new concept for building ecology studies. The Science of the Total 

Evironmental, 167, pp. 215–220, 1995. doi: http://dx.doi.org/10.1016/0048-9697(95)04582-l [16] Gaylarde, C.C. & Morton L.H.G., Deterogenic biofilm of buildings and their control: a review. Biofouling, 14(1), pp. 59–74, 1999. doi: http://dx.doi.org/10.1080/08927019909378397

[17] Barberousse, H., Ruota, B., Yéprémian, C. & Boulon, G., An assessment of façade coatings against colonisation by aerial algae and cyanobacteria. Building and Environment, 42, pp. 

255–256, 2007. doi: http://dx.doi.org/10.1016/j.buildenv.2006.07.031

[18] Guillitte, O. & Dreesen R. Laboratory chamber studies and petrographical analysis as bioreceptivity assessment tools of building materials. The Science of the Total Environment, 167, pp. 365–374, 1995. doi: http://dx.doi.org/10.1016/0048-9697(95)04596-s

[19] Gaylarde, P.M. & Gaylarde, C.C., Colonisation sequence of phototrophs on painted surfaces in Latin America. IBBS, 12, 1999.

[20] Gaylarde,P.M. & Gaylarde, C.C., Algae and cyanobacteria on painted buildings in Latin America. International Biodeterioration and Biodegradation, 46, pp. 93–97, 2000. doi: http://dx.doi.org/10.1016/s0964-8305(00)00074-3

[21] Ortega-Calvo, J.J., Ariño, X., Hernandez-Marine, M. & Saiz-Jimenez, C., Factors affecting the weathering and colonization of monuments by phototrophic microorganisms. The Science of the Total Environment, 167, pp. 329–341, 1995. doi: http://dx.doi. org/10.1016/0048-9697(95)04593-p

[22] Dubosc, A., Escadeillas, G. & Blanc, P.J., Characterization of biological stains on external concrete walls and influence of concrete as underlying material. Cement and Concrete Research, 31, pp. 1613–1617, 2001. doi: http://dx.doi.org/10.1016/s0008-8846(01)00613-5

[23] Grant, C. & Bravery, A.F., A new method for assessing the resistance of stone to algal disfigurement and the efficacy of chemical inhibitors. Proceedings of the 5th International Congress on Deterioration and Conservation of Stone, Presses Polytechniques Romandes: Lausanne, pp. 663–674, 1985.

[24] Ohshima, A., Matsui, I., Yuasa, N. & Henmi, Y., A study on growth of fungus and algae on mortar. Transaction of the Japan Concrete Institute, 21, pp. 173–178, 1999.

[25] Miller, A., Dionísio, A. & Macedo, M.F., Primary bioreceptivity: a comparative study of different Portuguese lithotypes. International Biodeterioration and Biodegradation, 57, pp. 136–142, 2006. doi: http://dx.doi.org/10.1016/j.ibiod.2006.01.003

[26] Miller, A.Z., Dionísio, A., Laiz, L., Macedo, M.F. & Saiz-Jimenez, C., The influence of inherent properties of building limestones on their bioreceptivity to phototrophic microorganisms. 

Annals of Microbiology, 59, pp. 705–71, 2009. doi: http://dx.doi.org/10.1007/bf03179212

[27] De Muynck, W., Ramirez, A.M., Belie, N.D. & Verstraete, W., Evaluation of strategies to prevent algal fouling on white architectural and cellular concrete. International Biodeterioration and Biodegradation, 63, pp. 679–689, 2009. doi: http://dx.doi.org/10.1016/j.ibiod.2009.04.007

[28] Manso, S., De Muynck, W., Segura,I., Aguado, A.,Steppe K., Boon, N. & De Belie, N., Bioreceptivity evaluation of cementitious materials designed to stimulate biological growth. Science of the Total Environment, 481, pp. 232–241, 2014. doi: http://dx.doi.org/10.1016/j. scitotenv.2014.02.059

[29] May, E., Lewis, F.J., Pereira, S., Taylor, S. & Seaward, M.R.D., Microbial deterioration of building stone – a review. Biodeterioration Abstracts, 7, pp. 109–123, 1993.

[30] Whitton, B.A., Diversity, ecology, and taxonomy of the cyanobacteria, Photosynthetic Prokaryotes, eds. N. H. Mann & N. F. Carr, Plenum Press: New York, NY, pp. 1–51, 1992. 

doi: http://dx.doi.org/10.1007/978-1-4757-1332-9_1

[31] Grant, C., Fouling of terrestrial substrates by algae and implications for control – a review. International Biodeterioration Bulletin, 18, pp. 57–65, 1982.

[32] Ortega-Morales, O., Guezennec, J., Hernández-Duque, G., Gaylarde, C.C. & Gaylarde, P.M., Phototrophic biofilms on ancient Mayan buildings in Yucatan, Mexico. Current Microbiology, 

40(2), pp. 81–85, 2000. doi: http://dx.doi.org/10.1007/s002849910015

[33] Ariño, X. & Saiz-Jimenez, C., Factors affecting the colonization and distribution of cyanobacteria, algae and lichens in ancient mortars. Proc. of the 8th International Congress on Deterioration and Conservation of Stone, Berlin, Germany, ed. J. Rieder, pp. 725–732, 1996.

[34] Friedmann, E.I., Endolithic microorganisms in the Antarctic cold desert. Science, 215, pp. 1045–1053, 1982. doi: http://dx.doi.org/10.1126/science.215.4536.1045

[35] Bell, R.A., Cryptoendolithic algae of hot semiarid lands and deserts. Journal of Phycology, 29, pp. 133–139, 1993. doi: http://dx.doi.org/10.1111/j.0022-3646.1993.00133.x

[36] Walker, J.J., Spear, J.R. & Pace, N.R., Geobiology of a microbial endolithic community in the Yellowstone geothermal environment. Nature, 434, pp. 1011–1014, 2005. doi: http://dx.doi. org/10.1038/nature03447

[37] Macedo, M.F., Miller, A.Z., Dionísio, A. & Saiz-Jimenez, C., Biodiversity of cyanobacteria and green algae on monuments in the Mediterranean Basin: an overview. Microbiology, 155, pp. 3476–3490, 2009. doi: http://dx.doi.org/10.1099/mic.0.032508-0

[38] Danin, A. & Caneva, G., Deterioration of limestone walls in Jerusalem and marble monuments in Rome caused by cyanobacteria and Cyanophilous lichens. International Biodeterioration, 26, pp. 397–417, 1990. doi: http://dx.doi.org/10.1016/0265-3036(90)90004-q

[39] Bravery, A.F., Biodeterioration of paint – a state of the art review. Biodeterioration 7, eds. D.R. Houghton, R.M. Smith & H.O.W. Eggins. Elsevier: London, pp. 466–485, 1988. doi: 

http://dx.doi.org/10.1007/978-94-009-1363-9_63

[40] Ortega-Calvo, J.J., Hernandez-Marine, H. & Saiz-Jimenez, C., Biodeterioration of building materials by cyanobacteria and algae. International Biodeterioration, 28, pp. 165–186, 1991. doi: http://dx.doi.org/10.1016/0265-3036(91)90041-o

[41] Schlichting Jr, H.E., The importance of subaerial algae from Ireland. British Phycology Journal, 10, pp. 257–261, 1975. doi: http://dx.doi.org/10.1080/00071617500650251

[42] Ortega-Calvo, J.J., Hernandez-Marine, M. & Saiz-Jimenez, C., Cyanobacteria and algae on historic buildings and monuments. Recent Advances in Biodeterioration and Biodegradation, eds. K.L. Garg, N. Garg, K.G. Mukerji, Naya Prokash: Calcutta, 1993, pp. 173–203.

[43] Wee,Y .C., Growth of algae on exterior painted masonry surfaces. International Biodererioration, 24, pp. 367–371, 1988. doi: http://dx.doi.org/10.1016/0265-3036(88)90022-x

[44] Warscheida, T.H. & Braams, J., Biodeterioration of stone: a review. International Biodeterioration and Biodegradation, 46, pp. 343–368, 2000. doi: http://dx.doi.org/10.1016/ s0964-8305(00)00109-8

[45] Giacobini, C., Nugari, M.P., Micheli, M.P., Mazzone, B. & Seawrad, M.R.D., Lichenology and the conservation of ancient monuments. An Interdisciplinary Study Biodeterioration, 6, eds. S. Berry, D.R. Houghton, G.C. Liewellyn, C.E. O’Rear CAB International Mycological Institute and The Biodeterioration Society: Slough, UK, pp. 386–392, 1985.

[46] Seaward, M.R.D., Giacobini, C., Giuliani, M.R. & Roccardi, A., The role of Lichens in the biodeterioration of ancient monuments with particular reference to Central Italy. International Biodeterioration, 25, pp. 49–55, 1989. doi: http://dx.doi.org/10.1016/0265-3036(89)90028-6

[47] Saiz-Jimenez, C. & Garcia-Rowe, J., Biodeterioration of marbles and limestones in Roman pavements. Proceedings of the Second International Symposium on the Conservation of Monuments in the Mediterranean Basins, Geneva, eds. D. Decrouez, J., Chamay, F., Zezza, pp. 263–271, 1992.

[48] Urzi, C.E. & Krumbein, W.E., Microbiological impacts on the cultural heritage. Durability and Change, eds. W.E. Krumbein, P. Brimblecombe, D.E. Cosgrove, S. Staniforth, Wiley: Chichester, pp. 107–135, 1994.

[49] De la Torre, M.A., Gomez-Alarcon, G., Melgarejo, P. & Saiz-Jimenez, C., Fungi in weathered sandstone from Salamanca cathedral (Spain). Science of the Total Environment, 107, pp. 159–168, 1991. doi: http://dx.doi.org/10.1016/0048-9697(91)90257-f

[50] Eckhardt, F.E.W., Solubilization, transport, and deposition of mineral cations by microorganisms – efficient rock weathering agents. In The Chemistry of Weathering, ed. J.I. Drever, 

D. Reidel Publ. Comp. Ltd: Dordrecht, pp. 161–173, 1985. doi: http://dx.doi.org/10.1007/97894-009-5333-8_10

[51] Griffin, P.S., Indictor, N. & Kloestler, R.J., The biodeterioration of stone: a review of deterioration mechanisms, conservation case histories, and treatment. International Biodeterioration, 28, pp. 187–207, 1991. doi: http://dx.doi.org/10.1016/0265-3036(91)90042-p

[52] Fernandes, P., Applied microbiology and biotechnology in the conservation of stone cultural heritage materials. Applied Microbiololgy and Biotechnology, 73, pp. 291–296, 2006. doi: http://dx.doi.org/10.1007/s00253-006-0599-8

[53] Pinheiro, S.M.M. & Silva, M.R., Microorganisms and aesthetic biodeterioration of concrete and mortar. Second International RILEM Workshop on Microbial Impact on Building Materials, ed. M.R. Silva, RILEM Publications: SARL, 2004.

[54] Giannantonio, D.J., Kurth, J.C., Kurtis, K.E. & Sobecky, P.A., Effects of concrete properties and nutrients on fungal colonization and fouling. International Biodeterioration and Biodegradation, 63, pp. 252–259, 2009. doi: http://dx.doi.org/10.1016/j.ibiod.2008.10.002

[55] Beech, I.B. & Gaylarde, C.C., Microbial polysaccharides and corrosion. International Biodeterioration, 27, pp. 95–107, 1991. doi: http://dx.doi.org/10.1016/0265-3036(91)90002-9

[56] Gaylarde, C.C. & Beech, I.B., Bacterial polysaccharides and corrosion. Biocorrosion, eds. C.C. Gaylarde, L.H.G. Morton, The Biodeterioration Society: Kew, Surrey, pp. 85–98, 1989.

[57] Ortega-Calvo, J.J., Hernandez-Marine, M. & Saiz-Jimenez, C., Biodeterioration of building materials by cyanobacteria and algae. International Biodeterioration, 28, pp. 165–185, 1991. doi: http://dx.doi.org/10.1016/0265-3036(91)90041-o

[58] Kemmling, A., Kämper, M., Flies, C., Schieweck, O., Hoppert, M., Biofilms and extracellular matrices on geomaterials. Environmental Geology, 46, pp. 429–435, 2004. doi: http://dx.doi. org/10.1007/s00254-004-1044-x

[59] Hsieh, K.M., Lion, L.W. & Schuler, M. L., Bioreactor for the study of defined interactions of toxic metals and biofilms. Applied and Environmental Microbiology, 50, 1155, 1985.

[60] Mittleman, M.W. & Geesey, G.G., Copper-binding characteristics of exopolymers from a freshwater-sediment bacterium. Applied and Environmental Microbiology, 49, 846–851, 1985.

[61] Ortega-Calvo, J.J., Hernandez-Marine, M. & Saiz-Jimenez, C., Experimental strategies for investigating algal deterioration of stone. Proc. of the 7th International Congress on Deterioration and Conservation of Stone, Lisbon, eds. J. Delgado, F. Henriques, & F. Telmo, pp. 541–549, 1992.

[62] Zanardini, E., Abbruscato, P., Ghedini, N., Realini, M. & Sorlini, C., Influence of atmospheric pollutants on the biodeterioration of stone. International Biodeterioration and Biodegradation, 45, pp. 35–42, 2000. doi: http://dx.doi.org/10.1016/s0964-8305(00)00108-6

[63] Saiz-Jimenez, C., Deposition of anthropogenic compounds on monuments and their effects on airborne microorganisms. Aerobiologia, 11, pp. 161–175, 1995. doi: http://dx.doi. org/10.1007/bf02450035

[64] Garcia-Vallés, M., Urzì, C., De Leo, F., Salamone, P. & Vendrell-Saz, M., Biological weathering and mineral deposits of the Belevi marble quarry (Ephesus, Turkey). International Biodeterioration and Biodegradation, 46, pp. 221–227, 2000. doi: http://dx.doi.org/10.1016/ s0964-8305(00)00076-7

[65] Shirakawa, M.A., Gaylarde, C.C., Gaylarde, P.M., John, V. & Gambale, W., Fungal colonization and succession on newly painted buildings and the effect of biocide. FEMS Microbiology Ecology, 39, pp. 165–173, 2002. doi: http://dx.doi.org/10.1111/j.1574-6941.2002.tb00918.x

[66] Sterflinger, K. & Prillinger, H. Molecular taxonomy and biodiversity of rock fungal communities in an urban environment (Vienna, Austria). Antonie van Leeuwenhoek, 80, pp. 275–286, 2001. doi: http://dx.doi.org/10.1023/a:1013060308809

[67] Gu, J.D., Fordb, T.E., Berkec, N.S. & Mitchell, R., Biodeterioration of concrete by the f ungus Fusarium. International Biodeterioration and Biodegradation, 41, pp. 101–109, 1998. doi: http://dx.doi.org/10.1016/s0964-8305(98)00034-1

[68] Hirsch, P., Eckhardt, F.E.W. & Palmer Jr., R.J., Methods for the study of rock-inhabiting microorganisms – a mini review. Journal of Microbiological Methods, 23, pp. 143–167, 1995. doi: http://dx.doi.org/10.1016/0167-7012(95)00017-f

[69] Giannantonio, D.J., Kurth, J.C., Kurtis, K.E. & Sobecky, P.A., Molecular characterizations of microbial communities fouling painted and unpainted concrete structures. International Biodeterioration and Biodegradation, 63, pp. 30–40, 2009. doi: http://dx.doi.org/10.1016/j. ibiod.2008.06.004

[70] Räty, K., Raatikainen, O., Holmalahti, J., von Wright, A., Joki, S., Pitakänen, A., Saano, V., Hyvärinen, A., Nevalainen, A. & Buti,I., Biological activities of actinomycetes and fungi isolated from the indoor air of problem houses. International Biodeterioration, 34, pp. 143–154, 

1994. doi: http://dx.doi.org/10.1016/0964-8305(94)90004-3

[71] Beech, I.B., Corrosion of technical materials in the presence of biofilms – current understanding and state-of-the art methods of study. International Biodeterioration and Biodegradation, 

53, pp. 177–183, 2004. doi: http://dx.doi.org/10.1016/s0964-8305(03)00092-1

[72] Fomina, M., Podgorsky, V.S., Olishevska, S.V., Kadoshnikov, V.M., Pisanska, I.R., Hillier, S. & Gadd, G.M., Fungal deterioration of barrier concrete used in nuclear waste disposal. Geomicrobiology Journal, 24, pp. 643–653, 2007. doi: http://dx.doi.org/10.1080/01490450701672240

[73] George, R.P., Ramya, S., Ramachandran, D. & Kamachi Mudali, U., Studies on biodegradation of normal concrete surfaces by fungus Fusarium sp. Cement and Concrete Research, 47, pp. 8–13, 2013. doi: http://dx.doi.org/10.1016/j.cemconres.2013.01.010

[74] Jacobson, E.S., Pathogenic roles for fungal melanins. Clinical Microbiology Review, 13, pp. 708–717, 2000. doi: http://dx.doi.org/10.1128/cmr.13.4.708-717.2000

[75] Dutton, M.V. & Evans, C.S., Oxalate production by fungi: its role in pathogenicity and ecology in the soil environment. Canadian Journal of Microbiology, 42, pp. 881–895, 1996. doi: http://dx.doi.org/10.1139/m96-114

[76] De la Torre, M.A.D., Gómez-Alarcón, G. & Palacios. J.M., ‘In vitro’ biofilm formation by Penicillium frequentans strains on sandstone, granite, and limestone. Applied Microbiology and Biotechnology, 40, pp. 408–415, 1993. doi: http://dx.doi.org/10.1007/bf00170402

[77] De la Torre, M.A., Gómez-Alarcón, G., Vizcaino, G. & Garcia, M.T., Biochemical mechanisms of stone alteration carried out by filamentous fungi living in monuments. Biogeochemistry, 19, pp. 129–147, 1993. doi: http://dx.doi.org/10.1007/bf00000875

[78] Krumbein, W.E. & Peteresen, K., Mikroorganismen beschleunigen den Zarfall mittelalterlicher Wandgemdid. Wandmalereischdden Arbeitshefte Denkmalpflege Neidersachsenm, 8, pp. 115–121, 1990.

[79] Beech, I.B. & Sunner, J. Biocorrosion: towards understanding interactions between biofilms and metals. Current Opinion in Biotechnology, 15, pp. 181–186, 2004. doi: http://dx.doi. org/10.1016/j.copbio.2004.05.001

[80] Annuk, H. & Moran, A.P., Microbial biofilm-related polysaccharides in biofouling and corrosion. Microbial Glycobiology; Structures, Relevance, and Application, A.P. Moran, O., Holst, P.J. Brennan, M. von Itzstein, Academic Press: London, pp. 781–801, 2009. doi: http://dx.doi. org/10.1016/b978-0-12-374546-0.00039-0

[81] Qian, P.Y., Lau, S., Dahms, H.-U., Dobretsov, S. & Harder, T., Marine biofilms as mediators of colonization by marine microorganisms: implications for antifouling and aquaculture. Marine 

Biotechnoogy, 9, pp. 399–410, 2007. doi: http://dx.doi.org/10.1007/s10126-007-9001-9

[82] Beech, I.B., Sunner, J.A. & Hiraoka, K., Microbe–surface interactions in biofouling and biocorrosion process. International Microbiology, 8, pp. 157–168, 2005.

[83] Kinzler, K., Gehrke, T., Telegdi, J. & Sand, W., Bioleaching – a result of interfacial processes caused by extracellular polymeric substances (EPS). Hydrometallurgy, 71, pp. 83–88, 2003. 

doi: http://dx.doi.org/10.1016/s0304-386x(03)00176-2

[84] Coetser, S.E. & Cloete, T.E., Biofouling and biocorrosion in industrial water systems. Critical Reviews in Microbiology, 31, pp. 213–232, 2005. doi: http://dx.doi.org/10.1080/ 10408410500304074

[85] Sand, W. & Bock, E., Biodeterioration of mineral materials by microorganisms-biogenic sulphuric and nitric acid corrosion of concrete and natural stone. Geomicrobiology Journal, 9, pp. 129–138, 1991. doi: http://dx.doi.org/10.1080/01490459109385994

[86] Chan, C.S., de Stasio, G., Welch, S.A., Girasole, M., Frazer, B.H., Nesterova, M.V., Fakra, S. 

& Banfield, J.F., Microbial polysaccharides template assembly of nanocrystal fibres. Science, 303, pp. 1656–1658, 2004. doi: http://dx.doi.org/10.1126/science.1092098

[87] Hamilton, W.A., Sulphate-reducing bacteria and anaerobic corrosion. Annual Review of Microbiology, 39, pp. 195–217, 1985. doi: http://dx.doi.org/10.1146/annurev.micro.39.1.195

[88] Pitonzo, B.J., Castro, P., Amy, P.S., Southam, G., Jones, D.A. & Ringelberg, D., Microbiologically influenced corrosion capability of bacteria isolated from Yucca Mountain. Corrosion, 

60(1), pp. 64–74, 2004. doi: http://dx.doi.org/10.5006/1.3299233

[89] Ferrari, C., Gholizadeh, A., Sleiman, M., Libbra, A., Muscio, A., Siligardi, C. & Akbari, H., Effect of ageing processes on solar reflectivity of clay roof tiles. Advances in Building Energy 

Research, DOI: 10.1080/17512549.2014.890535, 2014. doi: http://dx.doi.org/10.1080/1751 2549.2014.890535

[90] Gladis, F. & Schumann, R., Influence of material properties and photocatalysis on phototrophic growth in multi-year roof weathering. International Biodeterioration and Biodegradation, 65, pp. 36–44, 2011. doi: http://dx.doi.org/10.1016/j.ibiod.2010.05.014

[91] Shirakawa, M.A., Loh, K., John, V.M., Silva, M.E.S. & Gaylarde, C.C., Biodeterioration of painted mortar surfaces in tropical urban and coastal situations: comparison of four paint formulations. International Biodeterioration and Biodegradation, 65, pp.669–674, 2011. doi: http://dx.doi.org/10.1016/j.ibiod.2011.03.004

[92] Uemoto, K., Sato, N. & John, V., Influence of the mix proportion of mortars and paint formulation on the behaviour of the mortar/coating system in water transport phenomena. 11th International Conference on Durability of Building Materials and Components, Istanbul, Turkey, pp. 11–14, 2008.

[93] Tanaca, H.K., Dias, C.M.R., Gaylarde C.C., John, V.M. & Shirakawa, M.A., Discoloration and fungal growth on three fiber cement formulations exposed in urban, rural and coastal zones. Building and Environment, 46, pp. 324–330, 2011. doi: http://dx.doi.org/10.1016/j.buildenv.2010.07.025

[94] Portillo, M.C., Gazull, M.F., Sanchez, E. & Gonzalez, J.M., A procedure to evaluate the resistance to biological colonization as a characteristic for product quality of ceramic roofing tiles. Journal of the European Ceramic Society, 31, pp. 351–359, 2011. doi: http://dx.doi.

org/10.1016/j.jeurceramsoc.2010.10.012

[95] Giovannacci, D., Leclaire, C., Horgnies, M., Ellmer, M., Mertz, J.D., Orial, G., Chen, G. & Bousta, F., Algal colonization kinetics on roofing and façade tiles: influence of physical parameters. Construction and Building Materials, 48, pp. 670–676, 2013. doi: http://dx.doi. org/10.1016/j.conbuildmat.2013.07.034

[96] Barberousse, H., Rupt, B., Yepremian, C. & Boulon, G., An assessment of façade coatings against colonization by aerial algae and cyanobacteria. Building and Environment, 42, pp. 2555–2561, 2007. doi: http://dx.doi.org/10.1016/j.buildenv.2006.07.031

[97] ASTM Standard D662-93, Standard Test Method for Evaluating Degree of Erosion of Exterior Paints. ASTM International: West Conshohocken, PA, 2003, DOI: 10.1520/C0033-03, www.astm.org, 2011.

[98] Hicks, L.S. & Crewdson, M.J., Natural weathering. Paint and Coating Testing Manual: 14th Edition of the Gardner-Sward Handbook. ed. J.V. Koleske, ASTM: Philadelphia, PA, pp. 619 and 642 (Chapter 52), 1995. doi: http://dx.doi.org/10.1520/mnl10231m

[99] Escadeillas, G., Bertron, A., Blanc, P. & Dubosc, A., Accelerated testing of biological stain growth on external concrete walls. Part 1: development of the growth tests. Materials and Structures, 40, pp. 1061–1071, 2007. doi: http://dx.doi.org/10.1617/s11527-006-9205-x

[100] Valença, J., Gonçalves, L.M.S. & Jùlio, E., Damage assessment on concrete surfaces using multi-spectral image analysis. Construction and Building Materials, 40, pp. 971–981, 2013. doi: http://dx.doi.org/10.1016/j.conbuildmat.2012.11.061

[101] Escadeillas, G., Bertron, A., Ringot, E., Blanc, P. & Dubosc, A., Accelerated testing of biological stain growth on external concrete walls. Part 2: quantification of growths. Materials and Structures, 42, pp. 937–945, 2009. doi: http://dx.doi.org/10.1617/s11527-008-9433-3

[102] Santamouris. M., Synnefa, A. & Karlessi T., Using advanced cool materials in the urban built environment to mitigate heat islands and improve thermal comfort conditions. Solar Energy, 85, pp. 3085–3102, 2011. doi: http://dx.doi.org/10.1016/j.solener.2010.12.023

[103] Mastrapostoli, E., Santamouris, M., Kolokotsa, D., Vassilis, P.,Venieri, D. & Gompakis, K., A numerical and experimental analysis of the aging of the cool roofs for buildings in Greece, 134th AIVC Conference, Athens, Greece, 2013.