OPEN ACCESS
The purpose of this study is to investigate The influence of the air preheat temperature and excess air coefficient on the combustion process. For that, Combustion in a stagnation point reverse flow small-scale cylindrical combustor is numerically simulated. The burner and the exhaust port are located at the top of the combustor and the bottom end is closed. The fuel is natural gas. Turbulence is modelled using either the Reynolds stress model or large eddy simulation (LES). In the former case, two different combustion models are used, namely the eddy dissipationfinite rate (ED-FR) model with a two-step reaction mechanism, and the eddy dissipation concept (EDC) along with a detailed reaction mechanism. In the case of LES, only the ED-FR model is employed.. Through this study, it was found that The temperature field becomes more uniform when the excess air coefficient or the air preheat temperature increase. If the excess air coefficient increases, the maximum and average temperatures in the combustor are lower, as well as the heat release rate, the scalar gradients are smoother, the reaction zone becomes wider, and moves away from the burner. The increase of the preheat air temperature yields an increase of the maximum and averaged temperatures in the combustor, and an increase of the heat release rate, with a thinner and shorter reaction zone that is closer to the burner. Satisfactory predictions of the NO emissions were obtained.
reverse-flow combustor, eddy dissipation concept, air-preheat temperature, excess air
This work was supported by: FCT, through IDMEC, under LAETA, project UID/EMS/50022/2013 and Ministry of Higher Education and Scientific Research in Algeria
Arghode V. K., Gupta A. K., Bryden K. M. (2012). High intensity colorless distributed combustion for ultra low emissions and enhanced performance. Applied Energy, Vol. 92, pp. 822-830. http://dx.doi.org/10.1016/j.apenergy.2011.08.039
Bharani S., Singh S. N., Agrawal D. P. (2001). Effect of swirl on the flow characteristics in the outer annulus of a prototype reverse-flow gas turbine combustor. Experimental Thermal and Fluid Science, Vol. 25, pp. 337-347. http://dx.doi.org/10.1016/S0894-1777(01)00089-9
Bobba M. K., Gopalakrishnan P., Periagaram K., Seitzman J. M. (2008). Flame structure and stabilization mechanisms in a stagnation point reverse flow combustor. Journal of Engineering for Gas Turbines and Power, Vol. 130, No. 1, pp. 879-888. http://dx.doi.org/10.1115/GT2007-28231
Böhm B., Geyer D., Gregor M. A., Heeger C., Nauert A., Scneider C., Dreizler A. (2013). Advanced Laser diagnostics for understanding turbulent combustion and model validation. Flow and Combustion in Advanced Gas Turbine Combustors, Vol. 1581, pp. 93-160. https://doi.org/10.1007/978-94-007-5320-4_4
Castela M., Veríssimo A. S., Rocha A. M. A., Costa M. (2012). Experimental study of the combustion regimes occurring in a laboratory combustor. Combust. Sci. Technol, Vol. 184, No. 2, pp. 243-258. https://doi.org/10.1080/00102202.2011.630592
Coelho P. J., Peters N. (2001). Numerical simulation of a mild combustion burner. Combustion & Flame, Vol. 124, No. 3, pp. 503-518. https://doi.org/10.1016/S0010-2180(00)00206-6
Dally B. B., Riesmeier E., Peters N. (2004). Effect of fuel mixture on moderate and intense low oxygen dilution combustion. Combustion and Flame, Vol. 137, No. 3, pp. 418-431. https://doi.org/10.1016/j.combustflame.2004.02.011
De Soete G.G. (1975). Overall reaction rates of NO and N2 formation from fuel nitrogen. Proc. Combust. Inst, Vol. 15, No. 1, pp. 1093-1102. https://doi.org/10.1016/S0082-0784(75)80374-2
Duwig C., Iudiciani P. (2014). Large Eddy Simulation of turbulent combustion in a stagnation point reverse flow combustor using detailed chemistry. Fuel, Vol. 123, pp. 256-273. https://doi.org/10.1016/j.fuel.2014.01.072
Fortunato V., Galletti C., Tognotti L., Parente A. (2015). Influence of modelling and scenario uncertainties on the numerical simulation of a semi-industrial flameless furnace. Applied Thermal Engineering, Vol. 76, pp. 324-334. https://doi.org/10.1016/j.applthermaleng.2014.11.005
Galletti C., Parente A., Tognotti L. (2007). Numerical and experimental investigation of a mild combustion burner. Combustion and Flame, Vol. 151, No. 3, pp. 649-664. https://doi.org/10.1016/j.combustflame.2007.07.016
Gopalakrishnan P., Bobba M. K., Seitzman J. M. (2007). Controlling mechanisms for low NOx emissions in a non-premixed stagnation point reverse flow combustor. Proceedings of the Combustion Institute, Vol. 31, No. 2, pp. 3401-3408. https://doi.org/10.1016/j.proci.2006.07.256
Graça M., Duarte A., Coelho P. J., Costa M. (2013). Numerical simulation of a reversed flow small-scale combustor. Fuel Processing Technology, Vol. 107, pp. 126-137. https://doi.org/10.1016/j.fuproc.2012.06.028
Gupta A. K. (2004). Thermal characteristics of gaseous fuel flames using high temperature air. Journal of Engineering for Gas Turbines & Power, Vol. 126, No. 1, pp. 9-19. https://doi.org/10.1115/1.1610009
Kruse S., Kerschgens B., Berger L., Varea E., Pitsch H. (2015). Experimental and numerical study of MILD combustion for gas turbine applications. Applied Energy, Vol. 148, pp. 456-465. https://doi.org/10.1016/j.apenergy.2015.03.054
Lamouroux J., Ihme M., Fiorina B., Gicquel O. (2014). Tabulated chemistry approach for diluted combustion regimes with internal recirculation and heat losses. Combustion and Flame, Vol. 161, No. 8, pp. 2120-2136. https://doi.org/10.1016/j.combustflame.2014.01.015
Li P., Dally B. B., Mi J., Wang F. (2013). MILD oxy-combustion of gaseous fuels in a laboratory-scale furnace. Combustion and Flame, Vol. 160, No. 5, pp. 933-946. https://doi.org/10.1016/j.combustflame.2013.01.024
Liu, X., Zheng, H. (2013). Numerical simulation of air inlet conditions influence on the establishment of MILD combustion in stagnation point reverse flow combustor. Math. Problems Eng. Article ID 593601.
Magnussen B. F. (1981). On the structure of turbulence and a generalized eddy dissipation concept for chemical reaction in turbulent flow. 19th AIAA Aerospace Science Meeting, AIAA-2006-0962. https://doi.org/10.2514/6.1981-42
Magnussen B. F., Hjertager B. H. (1977). On mathematical modeling of turbulent combustion with special emphasis on soot formation and combustion. Proc. Combust. Inst, Vol. 16, No. 1, pp. 719-729. https://doi.org/10.1016/S0082-0784(77)80366-4
Mansour M. S., Bilger R. W., Dibble R. W. (1989). Raman/Rayleigh and Mie-scattering measurements in a reverse flow reactor close to extinction. Proc. Combust. Inst, Vol. 22, No. 1, pp. 711-719. http://dx.doi.org/10.1016/S0082-0784(89)80079-7
Mardani A., Tabejamaat S. (2012). NOx formation in H2-CH4 blended flame under mild conditions. Combust. Sci. Technol, Vol. 184, pp. 995-1010.
Mosca G., Lupant D. Gambale A., Lybaert P. (2013). Effect of air preheating temperature on flameless combustion of low calorific, alternative fuels. Proc. European Combustion Meeting, Lund, Sweden, 25-28 June.
Nicolle A., Dagaut P. (2006). Occurrence of NO-reburning in MILD combustion evidenced via chemical kinetic modeling. Fuel, Vol. 85, No. 17, pp. 2469-2478. http://dx.doi.org/10.1016/j.fuel.2006.05.021
Özdemir B. I., Peters N. (2001). Characteristics of the reaction zone in a combustor operating at mild combustion. Experiments in Fluids, Vol. 30, pp. 683-695. http://dx.doi.org/10.1007/s003480000248
Plessing T., Peters N., Wünning J. G. (1998). Laseroptical investigation of highly preheated combustion with strong exhaust gas recirculation. Proc. Combust. Inst, Vol. 27, pp. 3197-3204. http://dx.doi.org/10.1016/S0082-0784(98)80183-5
Rebola A., Coelho P. J., Costa M. (2013). Assessment of the performance of several turbulence and combustion models in the numerical simulation of a flameless combustor. Combust. Sci. Technol, Vol. 185, pp. 600-626. http://dx.doi.org/10.1080/00102202.2012.739222
Smagorinsky J. (1963). General circulation experiments with the primitive equations. Monthly Weather Review, Vol. 91, pp. 99-163.
Szegö G. G., Dally B. B., Nathan G. J. (2008). Scaling of NOx emissions from a laboratory-scale mild combustion furnace. Combust. Flame, Vol. 154, pp. 281-295. http://dx.doi.org/10.1016/j.combustflame.2008.02.001
Szegö G. G., Dally B. B., Nathan G. J. (2009). Operational characteristics of a parallel jet MILD combustion burner system. Combust. Flame, Vol. 156, pp. 429-438. http://dx.doi.org/10.1016/j.combustflame.2008.08.009
Undapalli S., Srinivasan S., Menon S. (2009). LES of premixed and non-premixed combustion in a stagnation point reverse flow combustor. Proc Combust. Inst, Vol. 32, No. 1, pp. 1537-1544.
Veríssimo A. S., Rocha A. M. A. Costa M. (2011). Operational, combustion and emission characteristics of a small-scale combustor. Energy Fuels, Vol. 25, pp. 2469-2480. http://dx.doi.org/10.1021/ef200258t
Veríssimo A. S., Rocha A. M. A., Coelho P. J., Costa M. (2015). Experimental and numerical investigation of the influence of the air preheating temperature on the performance of a small-scale mild combustor. Combust. Sci. Technol, Vol. 187, pp. 1724-1741. http://dx.doi.org/10.1080/00102202.2015.1059330
Wünning J. A., Wünning J. G. (1997). Flameless oxidation to reduce thermal NO-formation. Prog. Energ. Combust. Sci, Vol. 23, pp. 81-94. http://dx.doi.org/10.1016/S0360-1285(97)00006-3