Non contact RF characterization of structural changes of organic material

Non contact RF characterization of structural changes of organic material

Thi-Hong-Nhung Dinh Stéphane Serfaty Pierre-Yves Joubert 

Centre de Nanosciences et de Nanotechnologies (C2N), CNRS, Université Paris Sud, Université Paris Saclay, Bât. 220 F-91405 Orsay cedex

Systèmes et Applications des Technologies de l’Information et de l’Energie (SATIE), CNRS, Université Cergy Pontoise F-95000 Cergy-Pontoise cedex

Corresponding Author Email: 
thi-hong-nhung.dinh@u-psud.fr, pierre-yves.joubert@u-psud.fr, stephane.serfaty@u-cergy.fr
Page: 
177-212
|
DOI: 
https://doi.org/10.3166/I2M.15.3-4.177-212
Received: 
N/A
| |
Accepted: 
N/A
| | Citation

OPEN ACCESS

Abstract: 

The paper reports on the implementation of an inductive RF sensing technique dedicated to the non-contact evaluation of the dielectric properties of organic materials. The contactless measurement technique is implemented for the dielectric monitoring of eggs and acidified milk solutions during jellification. The obtained results are compared to results provided by conventional invasive techniques and open the way to the development of easy-to-implement and non-invasive dielectric monitoring techniques of organic materials, with many prospects in agrifood as well as health monitoring.

Keywords: 

inductive resonant sensor, radiofrequency dielectric characterization, non-contact sensing, non invasive measurement, organic material.

1. Introduction
2. Principe de la méthode de caractérisation diélectrique inductive sans contact
3. Mise en oeuvre expérimentale
4. Suivi des modifications structurelles de l’oeuf
5. Suivi de la formation de yaourts
6. Conclusion
Remerciements

Ce travail a bénéficié d’un support financier du LabeX LaSIPS (ANR-10-LABX-0040-LaSIPS) organisé par l’Agence nationale de la recherche dans le cadre du programme « Investissements d'avenir » (n°ANR-11-IDEX-0003-02).

  References

Agilent (2005). Agilent Basics of Measuring the Dielectric Properties of Materials. Operation and service manual. doi:5989-2589EN

Baran A., Kurrant D., Zakaria A., Fear E. et Lovetri J. (2014). Breast Imaging Using Microwave Tomography with Radar-Based Tissue-Regions Estimation. Progress In Electromagnetics Research, 149, August, p. 161‑171.

Bircan C. et Barringer S. A. (2002). Use of dielectric properties to detect egg protein denaturation. The Journal of microwave power and electromagnetic energy : a publication of the International Microwave Power Institute, vol. 37, n° 2, p. 89‑96.

Brusson M. Rossignol J., Binczak S., Laurent, G. et de Fonseca B. (2014). Assessment of Burn Depths on Organs by Microwave. Procedia Engineering, 87, p. 308‑311. doi:10.1016/j.proeng.2014.11.669

Cameron J. (1991). Physical Properties of Tissue. A Comprehensive Reference Book, Medical Physics, edited by Francis A. Duck, vol. 18, n° 4, p. 834. doi:10.1118/1.596734

Chen L. F., Ong C. K., Neo C. P., Varadan V. V et Varadan V. K. (2004). Microwave Electronics Measurement and Materials Characterization, Published Online: 28 jan 2005.

Darrasse L. et Ginefri J. C. (2003). Perspectives with cryogenic RF probes in biomedical MRI. Biochimie, vol. 85, n° 9, p. 915‑937. doi:10.1016/j.biochi.2003.09.016

Darrasse L. et Kassab G. (1993). Quick measurement of NMR-coil sensitivity with a dualloop probe. Review of Scientific Instruments, vol. 64, n° 7, p. 1841‑1844. doi:10.1063/1.1144020

Dennis J. et Moré J. (1977). Quasi-Newton Methods, Motivation and Theory. SIAM Review, vol. 19, n° 1, p. 46-89. doi:10.1137/1019005

Fear E. G. et Sill J. M. (2003). Preliminary investigations of tissue sensing adaptive radar for breast tumor detection. Engineering in Medicine and Biology Society, Proceedings of the 25th Annual International Conference of the IEEE, vol. 4, p. 3787‑3790. doi:10.1109/IEMBS.2003.1280985

Fetahagic S., Macej O., Djurddjevic J. D. et Jovanovic S. (2002). The influence of GDL concentration on milk pH change during acid coagulation. Journal of Agricultural Sciences, vol. 47, n° 1, p. 75-85.

Gabriel C., Gabriel, S. et Corthout, E. (1996). The dielectric properties of biological tissues: {I. Literature} survey. Physics in medicine and biology, vol. 41, n° 11, p. 2231.

Gabriel S., Lau R. W., Gabriel C. (1996). The dielectric properties of biological tissues: III. Parametric models for the dielectric spectrum of tissues. Physics in Medicine and Biology, vol. 41, n° 11, p. 2271‑2293. doi:10.1088/0031-9155/41/11/003

Ginefri J., Durand E. et Darrasse L. (1999). Quick measurement of nuclear magnetic resonance coil sensitivity with a single-loop probe with a single-loop probe, 4730, p. 10‑12. doi:10.1063/1.1150142

Gonord P., Kan S., Leroy-Willig A. et Wary C. (1994). Multigap parallel-plate bracelet resonator frequency determination and applications. Review of Scientific Instruments, vol. 65, n° 11, p. 3363. doi:10.1063/1.1144573

Griffiths H., Stewart W. R., Gough W. (1999). Magnetic Induction Tomography. A Measuring System for Biological tissues.pdf. Annals New york Academy of Sciences, p. 335‑345.

Guo W., Trabelsi S., Nelson S. O. et Jones D. R. (2007). Storage effects on dielectric properties of eggs from 10 to 1800 MHz. Journal of Food Science, vol. 72, n° 5. doi:10.1111/j.1750-3841.2007.00392.x

Guo W., Zhu X., Nelson S. O., Yue R., Liu H. et Liu Y. (2011). Maturity effects on dielectric properties of apples from 10 to 4500 MHz. LWT - Food Science and Technology, vol. 44, n° 1, p. 224‑230. doi:10.1016/j.lwt.2010.05.032

Ha S., Hamamura, M. J., Roeck, W. W., Hugg, J., Wagenaar, D. J., Meier, D., Nalcioglu, O. (2011). Feasibility study of a unilateral RF array coil for MR-scintimammography. Physics in medicine and biology, vol. 56, n° 21, p. 6809‑6822. doi:10.1088/0031-9155/56/21/004

Haemmerich D., Schutt D. J., Wright A. W., Webster J. G. et Mahvi D. M. (2009). Electrical conductivity measurement of excised human metastatic liver tumours before and after thermal ablation. Physiological measurement, vol. 30, n° 5, p. 459‑466. doi:10.1088/0967-3334/30/5/003

Haemmerich D., Staelin S. T., Tsai J. Z., Tungjitkusolmun S., Mahvi D. M. et Webster J. G. (2003). In vivo electrical conductivity of hepatic tumours. Physiological measurement, vol. 24, n° 2, p. 251‑260. doi:10.1088/0967-3334/24/2/302

Hagness S. C., Taflove A. et Bridges J. E. (1998). Two-dimensional FDTD analysis of a pulsed microwave confocal system for breast cancer detection: Fixed-focus and antennaarray sensors. IEEE Transactions on Biomedical Engineering, vol. 45, n° 12, p. 1470‑1474. doi:10.1109/10.730440

Heileman, K., Daoud, J. et Tabrizian, M. (2013). Dielectric spectroscopy as a viable biosensing tool for cell and tissue characterization and analysis. Biosensors & Bioelectronics, vol. 49, p. 348‑359. doi:10.1016/j.bios.2013.04.017

Heller J. et Feldkamp J. R. (2009). Auto-Tuned Induction Coil Conductivity Sensor for In-Vivo Human Tissue Measurements. Measurement Science Review, vol. 9, n° 6, p. 162‑168. doi:10.2478/v10048-009-0027-1

Hirano R., Hirano M., Oooka M. et Hatanaka K. (1998). Effects of lactoperoxidase on gelation properties of yogurt, Food research international, vol. 31, n° 1, Elsevier, Kidlington, Royaume-Uni.

Hoult D. I. et Richards R. E. (1976). The Signal-to-Noise Ratio of the Nuclear Magnetic Resonance Experiment, Journal Magn. Reson., vol. 24, n° 71, p. 71‑85.

Jha S. N., Narsaiah K., Basediya A. L., Sharma R., Jaiswal P., Kumar R. et Bhardwaj R. (2011). Measurement techniques and application of electrical properties for nondestructive quality evaluation of foods-a review. Journal of Food Science and Technology, vol. 48, n° 4, p. 387‑411. doi:10.1007/s13197-011-0263-x

Jilani M. T., Zaka M., Khan A. M., Khan M. T. et Ali S. M. (2012). A Brief Review of Measuring Techniques for Characterization of Dielectric Materials. International Journal of Information Technology and Electrical Engineering (ITEE), vol. 1, n° 1, p. 1‑5.

Jin Y., Yang N., Duan X., Wu F., Tong, Q. et Xu, X. (2015). Determining total solids and fat content of liquid whole egg products via measurement of electrical parameters based on the transformer properties. Biosystems Engineering, 129, p. 70‑77. doi:10.1016/j.biosystemseng.2014.09.017

Lazebnik M., McCartney L., Popovic D., Watkins C. B., Lindstrom M. J., Harter J., Hagness S. C. (2007). A large-scale study of the ultrawideband microwave dielectric properties of normal breast tissue obtained from reduction surgeries. Physics in medicine and biology, vol. 52, n° 10, p. 2637‑56. doi:10.1088/0031-9155/52/10/001

Lizhi H., Toyoda K. et Ihara I. (2010). Discrimination of olive oil adulterated with vegetable oils using dielectric spectroscopy. Journal of Food Engineering, vol. 96, n° 2, p. 167‑171. doi:10.1016/j.jfoodeng.2009.06.045

Lorrai, P., Corson D. R. et Lorrian F. (1988). Electromagnetic Fields And Waves: Including Electric Circuits. Repéré à file:///Users/Brian_Caudle/Documents/Papers/1988/Lorrain/1988 Lorrain.pdf \npapers: //75088281-f09c-4e77 -b8c2-14041f4545f6/Paper/p708

Lucey J.A., Munro P. A. et Singh H. (1999). Effects of heat treatment and whey protein addition on the rheological properties and structure of acid skim milk gels. International Dairy Journal, 9, p. 275‑279.

Lucey J. A., Tamehana M., Singh H. et Munro P. A. (1999). A comparison of the formation, rheological properties and microstructure of acid skim milk gels made with a bacterial culture or GDL. Food Research International, vol. 31, n° 2.

Marzec E. et Wachal K. (1999). The electrical properties of leg skin in normal individuals and in patients with ischemia. Bioelectrochemistry and Bioenergetics, vol. 49, n° 1, p. 73‑75. doi:10.1016/S0302-4598(99)00057-4

Masilamany G., Joubert P.-Y., Serfaty S., Roucaries B. et Le Diraison Y. (2014). Radiofrequency inductive probe for non- contact dielectric characterization of organic medium. Electronics letters, 6, p. 1‑2. doi:10.1049/el.2014.0558

Nortemann K., Hilland, J. et Kaatze, U. (1997). Dielectric Properties of Aqueous NaCl Solutions at Microwave Frequencies. Journal of Physical Chemistry A, vol. 101, n° 1, p. 6864‑6869. doi:10.1021/jp971623a

O’Halloran M., Conceicao, R. C., Byrne, D., Glavin, M. et Jones, E. (2009). FDTD Modeling of the breast: a review. Progress In Electromagnetics Research B, 18, p. 1‑24. doi:10.2528/PIERB09080505

O’Rourke A. P., Lazebnik M., Bertram J. M., Converse M. C., Hagness S. C., Webster J. G. et Mahvi, D. M. (2007). Dielectric properties of human normal, malignant and cirrhotic liver tissue: in vivo and ex vivo measurements from 0.5 to 20 GHz using a precision open-ended coaxial probe. Physics in medicine and biology, vol. 52, n° 15, p. 4707‑19. doi:10.1088/0031-9155/52/15/022

Ould-Ehssein C., Serfaty S., Griesmar P., Le Huérou J.-Y., Caplain E., Martinez L., Gindre M. (2006). Ultrasonic monitoring of yoghurt formation by using AT-cut quartz: lighting of casein micelles interactions process during the acidification. Ultrasonics, 44 Suppl 1,

e875‑9. doi:10.1016/j.ultras.2006.05.034

Pérez J.-P., Carles R. et Fleckinger R. (2001). Electromagnétisme - Fondements et applications (Elsevier-M).

Peyman A., Gabriel C. et Grant E. H. (2007). Complex permittivity of sodium chloride solutions at microwave frequencies. Bioelectromagnetics, vol. 28, n° 4, p. 264‑274. doi:10.1002/bem.20271

Ragni L., Al-Shami A., Mikhaylenko G. et Tang J. (2007). Dielectric characterization of hen eggs during storage. Journal of Food Engineering, vol. 82, n° 4, p. 450‑459. doi:10.1016/j.jfoodeng.2007.02.063

Ragni L., Cevoli C. et Berardinelli A. (2010). A waveguide technique for non-destructive determination of egg quality parameters. Journal of Food Engineering, vol. 100, n° 2, p. 343‑348. doi:10.1016/j.jfoodeng.2010.04.020

Ragni L., Gradari P., Berardinelli A., Giunchi A. et Guarnieri A. (2006). Predicting Quality Parameters of Shell Eggs using a Simple Technique based on the Dielectric Properties. Biosystems Engineering, vol. 94, n° 2, 255‑262. doi:10.1016/j.biosystemseng.2006.03.003 

Ryynanen S. (1995). The Electromagnetic Properties of Food Materials : A Review of the Basic Principles, Journal of Food Engineering, 26, p. 409‑429.

Sacilik K. et Colak A. (2010). Determination of dielectric properties of corn seeds from 1 to 100 MHz. Powder Technology, 203, n° 2, p. 365‑370. doi:10.1016/j.powtec.2010.05.031

Siefarth C., Tran, T. B. T., Mittermaier, P., Pfeiffer, T. et Buettner, A. (2014). Effect of Radio Frequency Heating on Yoghurt, I: Technological Applicability, Shelf-Life and Sensorial Quality. Foods, 3, p. 318-335. doi:10.3390/foods3020318

Sosa-Morales M. E., Valerio-Junco L., López-Malo A. et García H. S. (2010). Dielectric properties of foods: Reported data in the 21st Century and their potential applications. LWT-Food Science and Technology, vol. 43, n° 8, p. 1169‑1179. doi:10.1016/j.lwt.2010.03.017

Umbach S. L., Davis E. A., Gordon J. et Callaghan P. T. (1992). Water self-diffusion coefficients and dielectric properties determined for starch-gluten-water mixtures heated by microwave and by conventional methods. Cereal chemistry, vol. 69, n° 6, p. 637‑642.

Vander Vorst A., Rosen A. et Kotsuka Y. (2005). RF/Microwave Interaction with Biological Tissues. Hoboken, NJ, USA: John Wiley & Sons, Inc. doi:10.1002/0471752053

Venkatesh M. S. et Raghavan G. S. V. (2004). An Overview of Microwave Processing and Dielectric Properties of Agri-food Materials. Biosystems Engineering, vol. 88, n° 1, p. 1‑18. doi:10.1016/j.biosystemseng.2004.01.007

Wang J., Tang J., Wang Y. et Swanson B. (2009). Dielectric properties of egg whites and whole eggs as influenced by thermal treatments. LWT - Food Science and Technology, vol. 42, n° 7, p. 1204‑1212. doi:10.1016/j.lwt.2009.02.018

Wang M. (2017). Système radio-fréquence sans contact pour la caractérisation diélectrique de tissus biologiques, Thèse de doctorat en Electronique et optoélectronique, nano- et microtechnologies, 11 janvier, Orsay

Wang Y., Wig T. D., Tang J. et Hallberg L. M. (2003). Dielectric properties of foods relevant to RF and microwave pasteurization and sterilization. Journal of Food Engineering, vol. 57, n° 3, p. 257‑268. doi:10.1016/S0260-8774(02)00306-0

Wilkie-Chancellier N., Serfaty S., Griesmar P., Diraison Y. Le Huérou J.-Y. (2011). Inductive magneto-acoustic technique for viscous fluids monitoring. Ultrasonics Symposium (IUS), IEEE International, October, France, p. 1107-1110.

Xu Z.-M., Emmanouelidou D. G., Raphaelides S. N. et Antoniou K. D. (2008). Effects of heating temperature and fat content on the structure development of set yogurt. Journal of Food Engineering, vol. 85, n° 4, p. 590‑597. doi:10.1016/j.jfoodeng.2007.08.021

Zhang W., Liu F., Nindo C. et Tang J. (2013). Physical properties of egg whites and whole eggs relevant to microwave pasteurization. Journal of Food Engineering, vol. 118, n° 1, p. 62-69. doi:10.1016/j.jfoodeng.2013.03.003

Zhou X. (2016). Nouveau système de contrôle radiofréquence de micro-algues pour la santé et le bien-être. Université de Cergy-Pontoise.

Zhu X., Guo W. et Liang Z. (2015). Determination of the Fat Content in Cow’s Milk Based on Dielectric Properties. Food Bioprocess Technol, 8, p. 1485-1494. doi:10.1007/s11947-015-1508-x

Zou Y. et Guo Z. (2003). A review of electrical impedance techniques for breast cancer detection. Medical Engineering & Physics, vol. 25, n° 2, p. 79-90. doi:10.1016/S1350-4533(02)00194-7