Measurement of the quality coefficient of a micro resonator in the time domain. Study of integrated circuits

Measurement of the quality coefficient of a micro resonator in the time domain. Study of integrated circuits

Xiaojiao Ren Ming Zhang Nicolas Llaser 

C2N, Univ. Paris-Sud, Université Paris Saclay 15 rue Georges Clémenceau, 91405 Orsay, France

LPO Dorian 74 av. Philippe August, 75011 Paris, France

School of Microelectronics, Xidian University, Xi'an 710071, China

Corresponding Author Email: 
ming.zhang@u-psud.fr
Page: 
139-152
|
DOI: 
https://doi.org/10.3166/I2M.15.3-4.139-152
Received: 
N/A
| |
Accepted: 
N/A
| | Citation
Abstract: 

The method for determining the quality factor (Q) of MEMS resonators proposed here is based on a measurement carried out in the time domain and also on a compatible architecture with integrated circuit technology. Thus, it is possible to integrate the measurement circuit on the same chip as the resonator, which tracks the component changes during its life, so to anticipate its failures. An original design based on the 0.35μ m CMOS technology is introduced to mitigate the major flaws of the functional blocks. In addition, one of the objectives being to increase the operating frequency, the simulations showed that this parameter can be up to 200 kHz, with a measuring accuracy of 0.3%. 

Keywords: 

quality factor measurement, CMOS technology, integrated circuits, microresonator, time measurement, time-domain measurement, in-situ measurement.

1. Introduction
2. Principe de mesure de Q dans le domaine temporel
3. Diagramme de réalisation et fonctionnement
4. Conception d’un ASIC en technologie CMOS 0,35 μm
5. Résultats de simulation
6. Conclusion
Remerciements

Nous remercions vivement à l’organisme Eiffel Doctorat pour l’offre de la bourse de doctorat qui a permis cette mobilité d’étude durant presque une année scolaire et a rendu cette étude possible ainsi qu’aux rapporteurs pour leurs conseils.

  References

De Geronimo G., O’Connor P., Kandasamy A. (2002). Analog CMOS peak detect and hold circuits. Part 1. Analysis of the classical configuration. Nuclear Instruments and methods in Physics Research section A, 484: 533-543.

Kulikov El. (1959). Experimental measurement of quality factor measurement. Measurement Techniques, vol. 2, n° 6, p. 462-465.

Kruiskamp M.W., Leenaerts D.M.W. (1994). A CMOS Peak Detect Sample and Hold Circuit. IEEE Trans. Nucl. Sci., NS-41, n° 1, p. 295.

Lobontiu N. (2007). Dynamics of Microelectromechanical Systems. Springer.

Petersan P. J., Anlage S.M. (1998). Measurement of resonant frequency and quality factor of microwave resonators: Comparison of methods. Journal of Applied Physics, vol. 84, n° 6, p. 3392-3402.

Phillip E. Allen, Douglas R. Holberg. (1998). CMOS Analog Circuit Design, Oxford University Press.

Zeng K., Craig, Grimes A. (2004). Threshold-crossing counting technique for damping factor determination of resonator sensors. Review of scientific instruments, vol. 75, n° 12, p. 5257-5261 Décembre.

Zhang M., Llaser N., Mathias H. (2008). Improvement of the architecture for MEMS resonator quality factor measurement. IEEE Proc. ICECS, p. 255-258.

Zhang M., Llaser N., Rodes F. (2012). High-Precision Time-Domain Measurement of Quality Factor, IEEE Transactions on Instrumentation and Measurement, vol. 61, n° 3, p 842-844.

Zhang M., Llaser N., Wang X. (2013). New implementation of time domain measurement of quality factor, IEEE Proc. ISCAS, p. 1700-1703.