Test and characterization bench design with monitoring for optical and thermal, electrical analysis of LED

Test and characterization bench design with monitoring for optical and thermal, electrical analysis of LED

Sidahmed Beddar Guillaume Thin Jean-Baptiste Millet Yasser Alayli 

LISV, Université de Versailles Saint-Quentin-en-Yvelines

10-12 av. de l’Europe, 78140 Vélizy-Villacoublay, France

Corresponding Author Email: 
beddar.s@gmail.com
Page: 
137-160
|
DOI: 
https://doi.org/10.3166/I2M.15.1-2.137-160
Received: 
N/A
|
Accepted: 
N/A
|
Published: 
30 June 2016
| Citation
Abstract: 

Reliability engineers no longer deal with endurance problems for LED but rather with sudden failures which are due to design or process defects. It is therefore highly important to be able to detect such potential failures during reliability tests instead of using the too poor pass/fail analysis. Indeed, if commonly used parameters like flux and forward voltage are sufficient to estimate the LED lifetime, they show low efficiency in proving LED robustness and limiting the risk for warranty returns. We present here a new sensor test bench and the critical measurements that could be conducted before and after test.

- Thermal parameters: junction temperature (Tj) monitoring, structure function of the heat path.

- Electrical parameters: IV curves, low current luminescence, low current Vf.

- Optical parameters: spectrum, blue/white ratio.

Keywords: 

junction temperature (Tj), JEDEC51-1., SSL/LED, thermal management, lifetime, reliability, sensor test bench.

1. Introduction
2. Enjeux et problématiques
3. Méthodes de mesure de la température
4. Objectifs et orientations du banc de test
5. Banc de mesure de la température de jonction
6. Comparaison entre banc Tj LISV & banc T3ster
7. Résultats
8. Conclusion
  References

Chambion B., Mendizabal L., Bechou L., Carreau V., Deshayes Y., Gasse A. (2012). Eclairage Automobile. Les conséquences de l’intégration de DEL blanches de puissance sur la stratégie des tests de fiabilité. Journée IMAPS.

Chang M. H., Das D., Pecht M. (2011). Junction Temperature Characterization of High Power Light Emitting Diodes. Proc., IMAPS Mid-Atlantic Microelectronics Conference, p. 23-24.

Chhajed S., Xi Y., Gessmann T., Xi J-Q., Shah J. M., Kim J. K., Schubert E. F. (2005). Junction temperature in light-emitting diodes assessed by different methods. Proc. SPIE 5739, Light-Emitting Diodes: Research, Manufacturing, and Applications IX, 16.

JEDEC Solid State Technology Association. (2010). Transient dual interface test method for the measurement of the thermal resistance junction to case of semiconductor devices with heat flow trough a single path. JEDEC Standard.

Lasance C. J., Poppe A. (Eds) (2014). Thermal management for LED applications. Springer. Székely V., Van Bien T. (1988). Fine structure of heat flow path in semiconductor devices: a measurement and identification method. Solid-State Electronics, vol. 31, n° 9, p. 1363-1368.

Székely V. (1991). On the representation of infinite-length distributed RC one-ports. Circuits and Systems, IEEE Transactions on, vol. 38, n° 7, p. 711-719.