Performance Assessment of Space Shift Keying MIMO Techniques for Visible Light Communication

Performance Assessment of Space Shift Keying MIMO Techniques for Visible Light Communication

C.R. Bharathi

Department of ECE, Vel Tech Rangarajan Dr. Sagunthala R&D Institute of Science & Technology, Avadi, Chennai, Tamil Nadu 600054, India

Corresponding Author Email:
9 January 2018
26 March 2018
31 March 2018
| Citation



We compare various space shift keying multiple input multiple output (SSK-MIMO) techniques such as generalized space shift keying (GSSK), hamming code aided space shift keying (HSSK) and variable generalized space shift keying (VGSSK) for visible light communication (VLC) system. In addition, we analyze the bit error rate (BER) performance of these schemes for channels with different correlations. The BER expressions of these schemes are analytically approximated and used for the performance comparison. The suitability of VGSSK-MIMO for VLC is justified by its performance gain obtained over the other better performing SSK-MIMO systems. From the simulations, it is observed that the performance gain of 1 dB is achievable steadily under both high and less correlated channels for 3 bit/s/Hz by GSSK over HSSK.


hamming code, MIMO, space shift keying, visible light communication

1. Introduction
2. System Model
3. SSK-MIMO Techniques
4. Results and Discussions
5. Conclusion

[1] Zhu YJ, Liang WF, Zhang JK, Zhang YY. (2015). Space-collaborative constellation designs for MIMO indoor visible light communications. IEEE Photon. Technol. Lett. 27(15): 1667–1670.

[2] Fath T, Haas H. (2013). Performance comparison of MIMO techniques for optical wireless communications in indoor environments. IEEE Trans. Commun. 61(2): 733–742.

[3] Ishikawa N, Sugiura S. (2015). Maximizing constrained capacity of powerimbalanced optical wireless MIMO communications using spatial modulation. J. Lightw. Technol. 33(2): 519-527.

[4] Yang P, Xiao Y, Li L, Tang Q, Yu Y, Li S. (2012). Link adaptation for spatial modulation with limited feedback. IEEE Trans. Veh. Technol. 61(8): 3808–3813.

[5] Wang JY, Yang Z, Wang Y, Chen M. (2016). On the performance of spatial modulation–based optical wireless communications. IEEE Photon. Technol. Lett., 28(19): 2094–2097.

[6] Xu K, Yu H, Zhu YJ. (2016). Channel–adapted spatial modulation for massive MIMO visible light communications. IEEE Photon. Technol. Lett. 28(23): 2693–2696.

[7] Jeganathan J, Ghrayeb A, Szczecinski L, Ceron A. (2009). Space shift keying modulation for MIMO channels. IEEE Trans. Wireless Commun. 8(7): 3692–3703.

[8] Liang HW, Chang RY, Chung WH, Zhang H, Kuo SY. (2012). Bi– space shift keying modulation for MIMO systems. IEEE Commun. Lett. 16(8): 1161–1164.

[9] Renzo MD, Haas H. (2010). Improving the performance of space shift keying (SSK) modulation via opportunistic power allocation. IEEE Commun. Lett. 14(6): 500–502.

[10] Kallummil S, Kalyani S. (2016). Combining ML and compressive sensing: Detection schemes for generalized space shift keying. IEEE Wireless Commun. Lett. 5(1): 72–75.

[11] Chang RY, Lin SJ, Chung WH. (2012). New space shift keying modulation with hamming code-aided constellation design. IEEE Wireless Commun. Lett. 1(1): 2–5.

[12] Osman O. (2015). Variable active antenna spatial modulation. IET Microw. Antennas Propag: 9(15): 1816–1824.

[13] Wu CH, Chung WH, Liang HW. (2014). Improved generalized spaceshift keying via power allocation. IEEE Commun. Lett. 18(7): 1143–1146.

[14] Hranilovic S. (2016). Wireless optical communication systems. Springer Science & Business Media, 2006, ch. 3. International Conference on Engineering and Technology (ICET).