Parametric Simulation Analysis of a Centralized Solar Heating System with Long-term Thermal Energy Storage Serving a District of Residential and School Buildings in Italy

Parametric Simulation Analysis of a Centralized Solar Heating System with Long-term Thermal Energy Storage Serving a District of Residential and School Buildings in Italy

Giovanni Ciampi Antonio CiervoAntonio Rosato Sergio Sibilio Anna Di Nardo 

University of Campania Luigi Vanvitelli, Department of Architecture and Industrial Design, via San Lorenzo, Aversa 81031, Italy

Corresponding Author Email: 
antonio.ciervo@unicampania.it
Page: 
165-172
|
DOI: 
https://doi.org/10.18280/ama_a.550310
Received: 
28 February 2018
|
Accepted: 
9 May 2018
|
Published: 
30 September 2018
| Citation

OPEN ACCESS

Abstract: 

In this paper, a solar district heating system (basically composed of a solar collectors array, a short-term thermal energy storage (STTES), a long-term borehole thermal energy storage (BTES), an auxiliary natural gas-fired boiler and a heat distribution network) has been analysed by means of dynamic simulations over a 5-year period when serving a district composed of 6 typical single-family houses and 3 typical schools under the climatic conditions of Naples (Italy). A sensitivity analysis has been carried out by simulating 27 configurations obtained by varying the solar collectors area, the volume of STTES and the volume of BTES.

The simulations results have been compared with those associated to a conventional decentralized heating system in terms of solar fraction, primary energy consumption, operating costs and simple pay-back period in order to (i) evaluate the potential benefits, (ii) explore the influence of the components size on the system performance and (iii) establish some simple rules for the initial design of the main subsystems.

Keywords: 

borehole thermal energy storage, energy saving, solar district heating, solar energy, trnsys

1. Introduction
2. Description of the District
3. Description of the Proposed CSHPSS
4. Methods of Analysis
5. Results and Discussion
6. Conclusions
  References

[1] Hesaraki A, Holmberg S, Haghighat F. (2015). Seasonal thermal energy storage with heat pumps and low temperatures in building projects - A comparative review. Renewable and Sustainable Energy Reviews 43: 1199-1213. http://dx.doi.org/10.1016/j.rser.2014.12.002

[2] Pinel P, Cruickshank CA, Beausoleil-Morrison I, Wills A. (2011). A review of available methods for seasonal storage of solar thermal energy in residential applications. Renewable and Sustainable Energy Reviews 15(7): 3341-3359. http://dx.doi.org/10.1016/j.rser.2011.04.013

[3] Xu J, Wang RZ, Li Y. (2014). A review of available technologies for seasonal thermal energy storage. Solar Energy 103: 610-638. http://dx.doi.org/10.1016/j.solener.2013.06.006

[4] Rad FM, Fung AS. (2016). Solar community heating and cooling system with borehole thermal energy storage – Review of systems. Renewable and Sustainable Energy Reviews 60: 1550-1561. http://dx.doi.org/10.1016/j.rser.2016.03.025

[5] Rismanchi B. (2017). District energy network (DEN), current global status and future development. Renewable and Sustainable Energy Reviews 75: 571-579. http://dx.doi.org/10.1016/j.rser.2016.11.025

[6] Olsthoorn D, Haghighat F, Mirzaei PA. (2016). Integration of storage and renewable energy into district heating systems: A review of modelling and optimization. Solar Energy 136: 49-64. http://dx.doi.org/10.1016/j.solener.2016.06.054

[7] Rezaie B, Rosen MA. (2012). District heating and cooling: Review of technology and potential enhancements. Applied Energy 93: 2-10. http://dx.doi.org/10.1016/j.apenergy.2011.04.020

[8] Lake A, Rezaie B, Beyerlein S. (2017). Review of district heating and cooling systems for a sustainable future. Renewable and Sustainable Energy Reviews 67: 417-425. http://dx.doi.org/10.1016/j.rser.2016.09.061

[9] Lund H, Möller B, Mathiesen BV, Dyrelund A. (2010). The role of district heating in future renewable energy systems. Energy 35(3): 1381-1390. http://dx.doi.org/10.1016/j.energy.2009.11.023

[10] Connolly D, Lund H, Mathiesen BV, Werner S, Möller B, Persson U. (2014). Heat roadmap Europe: Combining district heating with heat savings to decarbonise the EU energy system. Energy Policy 65: 475-489. http://dx.doi.org/10.1016/j.enpol.2013.10.035

[11] Yang L, Entchev E, Rosato A, Sibilio S. (2017). Smart thermal grid with integration of distributed and centralized solar energy systems. Energy 122: 471-481. http://dx.doi.org/10.1016/j.energy.2017.01.114

[12] Ciampi G, Iuliano G, Rosato A, Sibilio S, Ciervo A, Barbieri D. (2017) District heating systems using seasonal thermal energy storages: A comprehensive literature review. Proceedings of the conference “Le Vie dei Mercanti – XV International Forum - WORLD HERITAGE AND DISASTER”, Naples/Capri (Italy) 009-1018

[13] TRNSYS. The transient energy system simulation tool. http://www.trnsys.com, accessed on Apr. 06, 2018.

[14] Richardson I, Thomson M, Infield D, Clifford C. (2010). Domestic electricity use: a high-resolution energy demand model. Energy and Buildings 42: 1878-1887. https://dspace.lboro.ac.uk/dspace-jspui/handle/2134/6997, accessed on Apr. 06, 2018.

[15] Italian Ministerial Decree, DM 26/06/2015. http://www.gazzettaufficiale.it/do/atto/serie_generale/caricaPdf?cdimg=15A0519800100010110002&dgu=2015-07-15&art.dataPubblicazioneGazzetta=2015-07-15&art.codiceRedazionale=15A05198&art.num=1&art.tiposerie=SG, accessed on Apr. 06, 2018.

[16] Jordan U, Vajen K. (2001). Realistic Domestic Hot-Water Profiles in Different Time Scales. http://sel.me.wisc.edu/trnsys/trnlib/iea-shc-task26/iea-shc-task26-load-profiles-description-jordan.pdf, accessed on Apr. 06, 2018.

[17] Kloben, http://www.kloben.it/products/view/3, accessed on Apr. 06, 2018.

[18] Sibilio S, Ciampi G, Rosato A, Entchev E, Yaici W. (2016). Parametric analysis of a solar heating and cooling system for an Italian multi-family house. International Journal of Heat and Technology 34(Sp.1): 458-464. http://dx.doi.org/10.18280/ijht.34Sp0138

[19] Ciampi G, Rosato A, Sibilio S. (2016). Dynamic simulation of a micro-Trigeneration system serving an Italian multi-family house: Energy, environmental and economic analyses. International Journal of Heat and Technology 34(Sp.1): 295-302. http://dx.doi.org/10.18280/ijht.34Sp0115.

[20] Decree of President of Italian Republic n. 412/93. http://efficienzaenergetica.acs.enea.it/doc/dpr412-93.pdf, accessed on Apr. 06, 2018.

[21] Pahud D. (2000). Central solar heating plants with seasonal duct storage and short-term water storage: design guidelines obtained by dynamic system simulations. Solar Energy 69(6): 495-509. http://dx.doi.org/10.1016/S0038-092X(00)00119-5

[22] Ciampi G, Rosato A, Sibilio S. (2018). Thermo-economic sensitivity analysis by dynamic simulations of a small Italian solar district heating system with a seasonal borehole thermal energy storage. Energy 143: 757-771. http://dx.doi.org/10.1016/j.energy.2017.11.029

[23] Vaillant, https://www.vaillant.it/home/prodotti/atmotec-exclusive-vmw-9664.html, accessed on Apr. 06, 2018.

[24] Angrisani G, Canelli M, Roselli C, Russo A, Sasso M, Tariello F. (2017). A small scale polygeneration system based on compression/absorption heat pump. Applied Thermal Engineering 114: 1393–1402. http://dx.doi.org/10.1016/j.applthermaleng.2016.10.048

[25] Price list of public works for the Campania region, http://www.lavoripubblici.regione.campania.it/joomla/index.php?option=com_jdownloads&Itemid=105&view=viewcategory&catid=111, accessed on Apr. 06, 2018.

[26] Ciampi G, Rosato A, Sibilio S. (2014). Yearly operation of a building-integrated microcogeneration system in south Italy: Energy and economic analyses. International Journal of Low-Carbon Technologies 9(4): 331-346. http://dx.doi.org/10.1093/ijlct/ctt074

[27] Italian Regulatory Authority for Energy, Networks and Environment. https://www.arera.it/it/inglese/index.htm, accessed on Apr. 06, 2018.