Economic Feasibility of Passive Strategies for Energy Efficient Envelopes of Mass-Built Housing in Hot-Dry Climate

Economic Feasibility of Passive Strategies for Energy Efficient Envelopes of Mass-Built Housing in Hot-Dry Climate

K. D. Reyes-Barajas R. A. Romero-Moreno A. Luna-León D. Olvera-García C. Sotelo-Salas G. Bojórquez-Morales

Universidad Autónoma de Baja California, Mexico

| |
| | Citation



The building and construction industry represents 36% of the world’s final energy use and 39% of carbon emissions, while the residential sector is responsible for 22% of total energy consumption and 17% of carbon emissions. Therefore, energy consumption reduction measures are required by this sector, without affecting the living conditions of its occupants. In Baja California, Mexico, the more commonly used construction systems in mass-built housing are concrete block walls and cast in place insulated reinforced concrete roof deck. These systems negatively affect comfort conditions, especially in hot summer periods, and therefore increase energy consumption, particularly in areas with an hot-dry climate, such as Mexicali, Baja California. The objective of this article is to determine the cost-benefit of two passive design strategies applied in the housing envelope, which are thermal insulation and ventilated facade. A commercial model of mass-built housing was taken as a benchmark case. Building energy simulations were carried out with the Design Builder® program, whereby the performance of the house was evaluated without passive design strategies (benchmark case) and with applied strate- gies, that is, variations in thickness and position of the materials that make up the layers of the walls and roof. Additionally, the net present value (NPV) criterion was used to obtain the costs and benefits of the design strategies. The results show the differences in cooling demand, indoor operative temperature, and the total costs, in Mexican pesos, of the application of the strategies; the results show that there are significant energy savings, which contribute to reducing carbon emissions to the environment and provide economic savings for the user.


economic feasibility, energy efficient envelope, hot-dry climate, mass-built housing, passive strategies


[1] Luna, A., Diseño y Evaluación de una Vivienda Energéticamente Sustentable para Cli- mas Desérticos, Unpublished Ph.D. thesis, Universidad Autónoma de Baja California, 2008, Accessed on: 03 Jun. 2020.

[2] Boeri, A., Gianfrate, V., & Longo, D., Green buildings and design for adaptation: Strategies for renovation of the built environment. International Journal of Energy Production and Management, 1(2), pp. 172–191, 2016.

[3] Yathreb, S., Analysis of a residential building energy consumption as “base model” in Tripoli, Lebanon. International Journal of Energy Production and Management, 1(4), pp. 359–370, 2016.

[4] Balance Nacional de Energía. Ciudad de México: Secretaría de Energía. Secretaría   de Energía, 2015, Nacional_de_Energ_a_2015 2_.pdf . Accessed on: 25 March. 2020.

[5] Instituto Nacional de Estadística y Geografía, Encuesta Nacional Sobre Consumo De Energéticos En Viviendas Particulares, adeprensa/boletines/2018/EstSociodemo/ENCEVI2018.pdf. Accessed on: 27 March. 2020.

[6] González Osorio, L.M. & y Beele, A., Estudio de Caracterización del uso de Aire Acondi- cionado en Vivienda de Interés Social. México: CONUEE / GIZ. (2016). https://www. Uso_Aire_Acondicionado_en_Vivienda.pdf. Accessed on: 03 Jun. 2021.

[7] Gutiérrez, T., Romero, R. & y Sotelo, C., Thermal energy impact of bioclimatic strate- gies applied to low-income housing in a hot dry climate. Energy Procedia, 57, pp. 1743–1752, 2014.

[8] Ochoa, J., Marincic, I., Alpuche, M.G., González, I., Barrios, G., Barajas, L.M. & y Gómez, A., Thermal comfort and energy performance of social housing in hot-dry cli- mates. Passive Low Energy Architecture Conference 2012, pp. 25–30, 2012.

[9] Romero-Pérez, C.K., Rodríguez-Muñoz, N.A., Alpuche-Cruz, M.G. & y Martín- Domínguez, I.R., Preliminary study of the condition of social housing in the city of Durango, México. Procedia Engineering, 134, pp. 29–39, 2017.

[10] Becerra-Santacruz, H. & y Lawrence, R., Evaluation of the thermal performance of  an industrialised housing construction system in a warm-temperate climate: Morelia, Mexico. Building and Environment, 107, pp. 135–153, 2016.

[11] Jannat, N., Hussien, A., Abdullah, B. & Cotgrave, A., A comparative simulation study of the thermal performances of the building envelope wall materials in the tropics. Sus- tainability, 12(4892), pp. 1–26, 2020. doi:10.3390/su12124892

[12] Irulegi, O., Torres, L., Serra, A., Mendizabal, I. & Hernandez, R., The Ekihouse: An energy self-sufficient house based on passive design strategies. Energy and Buildings, 83, pp. 57–69, 2014.

[13] Srivastav, S. & Jones, P.J., Use of traditional passive strategies to reduce the energy use and carbon emissions in modern dwellings. International Journal of Low-Carbon Technologies, 4, pp. 141–149, 2009. doi:10.1093/ijlct/ctp021

[14] Wang, F., Yang, W.J. & Sun, W.F., Heat transfer and energy consumption of passive house in severely cold area: simulation analyses. Energies, 13(626), pp. 1–19, 2020. doi:10.3390/en13030626

[15] La Roche, P., Carbon-Neutral Architectural Design, CRC Press: Boca Raton, pp. 290– 292, 2017.

[16] Belkacem, N., Loukarfi, L., Missoum, M., Naji, H., Khelil, A. & Braikia, M., Assess- ment of energy and environmental performances of a bioclimatic dwelling in Alge- ria’s North. Building Services Engineering Research and Technology, 38(1), pp. 64–88, 2016.

[17] Bhamare, D.K., Rathod, M.K. & Jyotirmay, B., Evaluation of cooling potential of pas- sive strategies using bioclimatic approach for different Indian climatic zones. Journal of Building Engineering, 31, p. 101356, 2020. jobe.2020.101356.

[18] Manzano-Agugliaro, F., Montoya, F.G., Sabio-Ortega, A. & García-Cruz, A., Review of bioclimatic architecture strategies for achieving thermal comfort. Renewable and Sustainable Energy Reviews, 49, pp. 736–755, 2015. org/10.1016/j.rser.2015.04.095.

[19] Taleb, H.M., Natural ventilation as energy efficient solution for achieving low-energy houses in Dubai. Energy and Buildings, 99, pp. 284–291, 2015.

[20] Barbosa, S. & Ip, K., Predicted thermal acceptance in naturally ventilated office build- ings with double skin façades under Brazilian climates. Journal of Building Engineer- ing, 7, pp. 92–102, 2016.

[21] Sotelo-Salas, C., Esparza-López, C.J. & Escobar-Del Pozo, C., Comportamiento Tér- mico de fachada ventilada opaca en clima cálido seco extremo. Revista de Arquitectura y Diseño, 3(10), pp. 20–28, 2019.

[22] Rubiano, M.A., La fachada ventilada y el confort climático: un instrumento tecnológico para edificaciones de clima cálido en Colombia. Dearq Revista de Arquitectura/Journal of Architecture, 18, pp. 138–145, 2016.

[23] Barbosa, S. & Ip, K., Perspectives of double skin façades for naturally ventilated build- ings: A review. Renewable and Sustainable Energy Reviews, 40, pp. 1019–1029, 2014.

[24] Fantucci, S., Marinosci, C., Serra, V. & Carbonaro, C., Thermal performance assess- ment of an opaque ventilated façade in the Summer period: Calibration of a simula- tion model through in-field measurements. Energy Procedia, 111, pp. 619–628, 2017.

[25] Luciani-Mejia, S., Velasco-Gomez, R. & Hudson, R., Eco-envolventes: Análisis del uso de fachadas ventiladas en clima cálido-húmedo. Revista de Arquitectura, 20(2), pp. 62–77, 2018.

[26] Charde, M. & Gupta, R., Design development and thermal performance evaluation of static sunshade and brick cavity wall: An experimental study. Energy and Buildings, 60, pp. 210–216, 2013. doi:10.1016/j.enbuild.2012.12.021

[27] Friess, W.A. & Rakhshan, K., A review of passive envelope measures for improved building energy efficiency in the UAE. Renewable and Sustainable Energy Reviews, pp. 485–496, 2017.

[28] Rizzarello, F., Hongn, M. & Gea, M., Simulación computacional del comportamiento térmico de una vivienda social en Salta Capital. Energías Renovables y Medio Ambi- ente, 42, pp. 15–27, 2018.

[29] Roversi, R., Cinquepalmi, F., Cumo, F.  & Pennacchia, E., Experimental envelopes and their integration in the Building Information Modeling energy simulation process. International Journal of Energy Production and Management, 3(2), pp. 97–109, 2018.

[30] Arévalo, K., Pastrano, E. & Armijos, V., Relación beneficio – costo por tratamiento en la producción orgánica de las hortalizas (Cilantro, Lechuga, Cebolla Roja, Cebolla de Rama) en el cantón Santo Domingo de Los Colorados. Revista Publicando, 3(7), pp. 503–528, 2016.

[31] García, E., Modificaciones al sistema de clasificación climática de Koppen, Instituto de Geografía, UNAM, México, 2004.

[32] Servicio Meterológico Nacional, Información climatológica por estado. https://smn.

[33] 2021. Weather Data | EnergyPlus. [online] Available at: https://energy-, Accessed 05 2020.

[34] American Society of Heating, Refrigerating and Air-Conditioning Engineers. ASHRAE Handbook of fundamentals. Atlanta, Ga: American Society of Heating, Refrigerating and Air-Conditioning Engineers, 2017.

[35] Luna, A., Machote_Fanger_2Oct2019. Universidad Autónoma de Baja California, 2019.

[36] International Standard ISO 7730, Ergonomics of the thermal environment — Analytical determination and interpretation of thermal comfort using calculation of the PMV and PPD indices and local thermal comfort criteria, pp. 2, 2005.

[37] Instituto Nacional de Estadística y Geografía, (INEGI). Índice nacional de precios al consumidor, pp. 11, 2020.

[38] Luna, A., COSTO de Energía CFE_2019, Universidad Autónoma de Baja California. 2019.

[39] Baca, G., Evaluación de Proyectos. Administración de SEP, Clases de 10mo. Nivel, Universidad Politécnica Salesiana (UPS), Escuela de Eléctrica, pp. 356, 2013.

[40] Reyes-Barajas, K., Romero-Moreno, R., Sotelo-Salas, C., Luna-León, A. & Bojórquez- Morales, G., Passive strategies for energy-efficient building envelopes for housing developments in hot arid climates. WIT Transactions on Ecology and the Environment, Vol. 249, pp. 115–125, 2020.