Development and Preliminary Evaluation of Pcm Thermal Energy Storage for Air Cooling in Buildings

Development and Preliminary Evaluation of Pcm Thermal Energy Storage for Air Cooling in Buildings

P. Pontelandolfo P. Haas R. Da Silva Lima R. Putzu O. Sari P. Nikkola 

University of Applied Sciences and Arts Western Switzerland, HEPIA-Genève, Switzerland

University of Applied Sciences and Arts Western Switzerland, HEIG-VD, Switzerland

Page: 
153-164
|
DOI: 
https://doi.org/10.2495/EQ-V2-N2-153-164
Received: 
N/A
| |
Accepted: 
N/A
| | Citation

OPEN ACCESS

Abstract: 

This study presents the development of a real-scale latent heat thermal energy storage (TES) device based on an air-PCM (phase change material) heat exchanger. The device uses the outdoor ambient temperature difference between night and day to refresh the indoor air and shift or completely avoid the use of air-conditioning in air-cooling in the building sector. The design is based on an extensive set of numerical simulations, performed by the commercial software ANSYS Fluent, focused on a parametric study allowing to identify the optimum value of different design parameters in order to have 10 hours of temperature shift. The numerical simulations were supported by experimental measurements done with a small-scale test rig. Additionally, the thermal response of the PCM to cooling and heating was also studied in a controlled temperature and humidity environment.

Keywords: 

buildings, CFD simulations, phase change material (PCM), prototype development and realization, thermal energy storage

  References

[1] Santamouris, M., Air-conditioning: energy consumption and environment quality, Encyclopedia of Life Support System (EOLSS), 2009.

[2] Pérez-Lombard, L., Ortiz, J. & Pout, C., A review on buildings energy consumption information. Energy and Buildings, 40(3), pp. 394–398, 2008. https://doi.org/10.1016/j.enbuild.2007.03.007

[3] Gil, A., Medrano, M., Martorell, I., Lázaro, A., Dolado, P., Zalba, B. & Cabeza, L.F., State of the art on high temperature thermal energy storage for power generation. Part 1 — Concepts, materials and modellization. Renewable Sustainable Energy Reviews, 14, pp. 31–55, 2014. https://doi.org/10.1016/j.rser.2009.07.035

[4] Haas, P. & Schmitt, P.L., Etude de l’aérodynamique interne d’un déphaseur d’ondes thermiques, Projet HES-SO, hepia-cmefe, 2009.

[5] Bernhard, M., Realizzazione e analisi di un prototipo per lo sfasamento dell’onda ter- mica giornaliera estiva per il raffrescamento di ambienti residenziali, Master thesis at Bologna University, Prof. P. Haas (hepia-cmefe) and Prof. B. Pulvirenti (UNIBO), 2015.

[6] Egolf, P.W., Noume, A.N., Vuarnoz, D. & Gottschalk, G., Breathing building: A decen- tralized façade-integrated solar air-conditioning system, UNEP 2014.

[7] Muriset, C., Egolf, P.W., Vuarnoz, D. & Haas, P., Lowering and phase shifting of tempera- ture profiles with phase change materials in Minergie houses, 8th IIR Conference on phase change materials and slurries for refrigerating and air conditioning, Karlsruhe, 2009.

[8] Zgraggen, J.-M., Etude d’un lit de sphères pour le déphasage d’une onde thermique – Calcul analytique et vérification expérimentale, Student work of the Geneva University, 10 October 2003.

[9] Hollmuller, P., Lachal, B., Zgraggen, J.-M., Pampaloni, E., Mezzo J., Déphaseur ther- mique diffusif, Rapport for the Swiss Federal Office of Energy SFOE, June 2004.

[10] Sharma, A., Tyagi, V.V., Chen, C.R. & Buddhi, D., Review on thermal energy stor- age with phase change materials and applications. Renewable and Sustainable Energy Reviews, 13, pp. 318–345, 2009. https://doi.org/10.1016/j.rser.2007.10.005

[11]  Abhat, A., Low temperature latent heat thermal energy storage: heat storage materials. Solar Energy, 30(4), pp. 313–332, 1983. https://doi.org/10.1016/0038-092x(83)90186-x

[12] Kumar, A. & Shukla, S.K., A review on thermal energy storage unit for solar thermal power plant application, International Conference on Technologies and Materials for Renewable Energy, Environment and Sustainability. Energy Procedia, 74, pp. 462–469, 2015. https://doi.org/10.1016/j.egypro.2015.07.728

[13] Anzar, A. & Shine, K., Transient thermal analysis of phase change material based heat sinks. International Journal of Research in Engineering and Technology, 2(11), pp. 703–714, 2013. https://doi.org/10.15623/ijret.2013.0211107

[14] Hollmuller, P., Utilisation des échangeurs air/sol pour le chauffage et le rafraîchisse- ment des bâtiments – Mesures in situ, modélisation analytique, simulation numérique et analyse systémique, Thesis presented to the Faculty of Science at the University of Geneva, ref. 3357, 25 June 2002.

[15] Hollmuller, P., Lachal, B. & Zgraggen, J.M., A new ventilation and thermal storage technique for passive cooling of buildings: thermal phase-shifting, PLEA 23rd Inter- national conference on passive and low energy architecture, Geneva, Switzerland, 6–8 September 2006.

[16] Kumar, A. & Shukla, S.K., A review on thermal energy storage unit for solar thermal power plant application, International Conference on Technologies and Materials for Renewable Energy, Environment and Sustainability, TMREES15, 2015.