Un estimateur de la L2-mesure de dépendance probabiliste pour la réduction de dimension vectorielle
Cas multiclasse
OPEN ACCESS
We introduce an estimate of the L2-probabilistic dependence measure constructed with the generalized Fourier series which is able to realize a linear vector feature dimensional reduction in the discriminate multi-class problem. It generalizes the Patrick-Fischer distance estimate generally used for dimensionality reduction of the feature space in the case of binary classification. It has a direct relationship with the probability classification error. We compare the proposed algorithm with the well known linear discriminate analysis (LDA) and with a generalized version of a multi class recursive linear extractor based on the L2-probabilistic dependence measure (R1D L2-PMD). For vector Gaussian mixtures such comparison is done in the mean of the probability error of classification which is estimated by a multivariate Kernel probability density function. The corresponding smoothing parameters are optimized analytically in the sense of the Mean Integrated Square Error (MISE). The non Gaussian case is evaluated with the error of the k nearest neighborhood classifier. Finally we will illustrate the importance of the proposed method by testing it in the context of the face recognition.
RÉSUMÉ
Nous évaluons ici les performances d’un estimateur de la L2-mesure de dépendance probabiliste en vue de la réduction de dimension bidimensionnelle linéaire dans le cas multiclasse. Cette quantité qui présente un lien direct avec la probabilité d’erreur de classification, est construite à l’aide des séries de Fourier généralisées. Nous comparons l’algorithme proposé d’une part, à l’analyse discriminante linéaire introduite par Fisher et, d’autre part, à une version généralisée au cas multiclasse se basant sur l’extracteur linéaire récursif de la L2-mesure de dépendance probabiliste. Dans le cas non gaussien, cette évaluation sera faite au sens de l’erreur des k plus proches voisins. L’estimateur à noyau des densités de probabilité est calculé dans le contexte du paramètre de lissage optimisé au sens de la moyenne quadratique intégrée. Ce dernier servira à l’estimation de la probabilité d’erreur de classification des mélanges de vecteurs gaussiens. Nous montrons sur un exemple de bases d’images de visages l’intérêt du réducteur de dimension proposé relativement aux méthodes conventionnelles.
L2-probabilistic dependence measure, reduction dimension, smoothing parameter
MOTS-CLÉS
L2-mesure de la dépendance probabiliste, réduction de dimension, paramètre de lissage