Numerical Investigation of Species Distribution and the Anode Transfer Coefficient Effect on the Proton Exchange Membrane Fuel Cell (PEMFC) Performance

Numerical Investigation of Species Distribution and the Anode Transfer Coefficient Effect on the Proton Exchange Membrane Fuel Cell (PEMFC) Performance

Ahmadi N. Rezazadeh S. Hassani M. Sadeghiazad M. 

Urmia University of Technology Mechanical Engineering Department, Iran

Urmia University, Mechanical Engineering Department, CFD Research Center, Iran

Page: 
41-48
|
DOI: 
https://doi.org/10.18280/ijht.310106
Received: 
N/A
| |
Accepted: 
N/A
| | Citation

OPEN ACCESS

Abstract: 

A full numerical, three-dimensional, single phase computational fluid dynamics model of a proton exchange membrane fuel cell (PEMFC) with both the gas distribution flow channels and the Membrane Electrode Assembly (MEA) has been developed. A single set of conservation equations which are valid for the flow channels, gas-diffusion electrodes, catalyst layers, and the membrane region are developed and numerically solved using a finite volume based computational fluid dynamics technique. The present simulated single straight channel PEMFC model, accounts the major transport phenomena and the performance. Additionally, the effect of anode transfer coefficient, αan, reduction has been investigated on the fuel cell performance and species distribution. The results showed that, decreasing the anode transfer coefficient leads to lower magnitude of the oxygen and water mass fraction. In this way, the current density, which generating by the cell decreases too. Finally, the numerical results validated by available experimental data.

Keywords: 

cell voltage, CFD, current density, exchange coefficient, fuel cell performance, pem fuel cells

  References

[1] Kazim, A., Liu, H.T., Forges, P. Modelling of performance of PEM fuel cells with conventional and interdigitated flow fields (1999) Journal of Applied Electrochemistry, 29 (12), pp. 1409-1416. doi: 10.1023/A:1003867012551

[2] Grujicic, M., Chittajallu, K.M. Design and optimization of polymer electrolyte membrane (PEM) fuel cells (2004) Applied Surface Science, 227 (1-4), pp. 56-72. http://www.journals.elsevier.com/applied-surface-science/ doi: 10.1016/j.apsusc.2003.10.035

[3] Xing, X.Q., Lum, K.W., Poh, H.J., Wu, Y.L. Optimization of assembly clamping pressure on performance of proton-exchange membrane fuel cells (2010) Journal of Power Sources, 195 (1), pp. 62-68. doi: 10.1016/j.jpowsour.2009.06.107

[4] Ahmed, D.H., Sung, H.J. Effects of channel geometrical configuration and shoulder width on PEMFC performance at high current density (2006) Journal of Power Sources, 162 (1), pp. 327-339. doi: 10.1016/j.jpowsour.2006.06.083

[5] Ahmadi, N., Pourmahmoud, N., Mirzaee, I., Rezazadeh, S. Three-dimensional computational fluid dynamic study of effect of different channel and shoulder geometries on cell performance (2011) Australian Journal of Basic and Applied Sciences, 5 (12), pp. 541-556. http://www.insipub.net/ajbas/2011/December-2011/541-556.pdf

[6] Ahmadi, N., Rezazadeh, S., Mirzaee, I., Pourmahmoud, N. Three-dimensional computational fluid dynamic analysis of the conventional PEM fuel cell and investigation of prominent gas diffusion layers effect (2012) Journal of Mechanical Science and Technology, 26 (8), pp. 2247-2257. doi: 10.1007/s12206-012-0606-1

[7] Ahmed, D.H., Sung, H.J. Design of a deflected membrane electrode assembly for PEMFCs (2008) International Journal of Heat and Mass Transfer, 51 (21-22), pp. 5443-5453. doi: 10.1016/j.ijheatmasstransfer.2007.08.037

[8] Gurau, V., Liu, H., Kakaç, S. Two-dimensional model for proton exchange membrane fuel cells (1998) AIChE Journal, 44 (11), pp. 2410-2422. www.interscience.wiley.com doi: 10.1002/aic.690441109

[9] Meredith, R.E., Tobias, C.W. (1960) Advances in Electrochemistry and Electrochemical Engineering 2. Tobias, C.W., ed., Interscience Publishers, New York

[10] Byron, B.R., Stewart, W.E., Lightfoot, E.N. (1960) Transport Phenomena. John Wiley & Sons, Inc

[11] Springer, T.E., Zowodzinski, T.A., Gottesfeld, S. Polymer Electrolyte Fuel Cell Model (1991) Journal of the Electrochemical Society, 138 (8), pp. 2334-2342. doi: 10.1149/1.2085971

[12] Kulikovsky, A.A. Quasi-3D modeling of water transport in polymer electrolyte fuel cells (2003) Journal of the Electrochemical Society, 150 (11), pp. A1432-A1439. doi: 10.1149/1.1611489

[13] Yeo, S.C., Eisenberg, A. Physical properties and supermolecular structure of perfluorinated ion‐containing (nafion) polymers (1977) Journal of Applied Polymer Science, 21 (4), pp. 875-898. doi: 10.1002/app.1977.070210401

[14] Wang, L., Husar, A., Zhou, T., Liu, H. A parametric study of PEM fuel cell performances (2003) International Journal of Hydrogen Energy, 28 (11), pp. 1263-1272. doi: 10.1016/S0360-3199(02)00284-7