Probing elastic properties of nanostructured materials by picosecond acoustics

Probing elastic properties of nanostructured materials by picosecond acoustics

Jérémy Avice 
Gwenaelle Vaudel 
Christophe Boscher 
Philippe Belleville 
Vitali Gusev 
Guillaume Brotons 
Hervé Piombini 
Pascal Ruello 

CEA, DAM Le Ripault, 37260 Monts, France

Institut des Molécules et Matériaux du Mans (IMMM), Univ. Bretagne-Loire, UMR 6283 CNRS, Univ. Maine, av. Olivier Messiaen,72085 Le Mans, France

Laboratoire d’Acoustique, Univ. Bretagne-Loire, UMR 6613 CNRS, Univ. Maine, av. Olivier Messiaen, 72085 Le Mans, France

Corresponding Author Email: 
Jérémy.avice@cea.fr
Page: 
175-182
|
DOI: 
https://doi.org/10.3166/i2m.16.1-4.175-182
Received: 
|
Accepted: 
|
Published: 
31 December 2017
| Citation

ACCESS

Abstract: 

Probing elastic properties at small scales becomes crucial for the control of nanostructures. For this, hypersonous acoustic sources (GHz-THz) must be available to achieve the nanometric resolution. This type of sources exists since 30 years thanks to the advent of femtosecond lasers. In this work, we investigated the elastic response of colloidal and nanostructured materials in the 1-10 GHz domain. The samples studied are deposits of silica nanoparticles having a porosity of 55%. The interconnection of these particles is modified by a post-processing transforming Van der Waals-type bonds into covalent and hydrogen bonds. The hypersonic waves are emitted into the material studied via a transducer which is a thin metallic film on which the silica nanoparticles are deposited. This transducer is excited optically by a femtosecond laser. By mechanical transfer of these acoustic waves into the thin layer of silica, this layer resonates. The elastic response of this resonator/colloid system is presented as a function of the post-treatment ammonia time

Keywords: 

antireflective, hardening, picosecond acoustics, non destructive testing

1. Introduction
2. Techniques expérimentales
3. Résultats
4. Conclusion
  References

Akimov A.-V., Young E.-S.-K., Sharp J.-S., Gusev V., Kent J. (2011). Coherent hypersonic closed-pipe organ like modes in supported polymer films. Appl. Phys. Lett. 99, 021912.

Akimov A.-V., Poyser C.-L. Czerniuk T., Diroll B.-T., Goulding A., Salasyuk A.-S, Kent J;, Yakovlev D.-R., Bayer M., Murray C.-B. (2016). Coherent acoustic phonons in colloidal semiconductor nanocrystal superlattices. ACS Nano, p. 1163-1169.

André M.-L. (1999). The French MegaJoule Laser Project. Fusion Engineering and Design, vol. 44, n° 1-4, p. 43-49.

Avice J., Piombini H., Boscher C., Barre A.-L. (2017). Identification de faïençage de couche mince Sol-Gel. I2M soumis.

Ayouch A., Dieudonne X., Vaudel G., Piombini H., Valle K., Gusev V., Belleville P., Ruello P. (2012). Elasticity of an assembly of disordored nanoparticles interacting via either Van der Waals bonded or Covalent bonded coating layers. ACS Nano, p. 10614-10621.

Belleville P., Bonnin C., Pritton, J.-J. (2000). Room Temperature Mirror Preparation Using Sol-Gel Chemistry and Laminar-Flow Coating Technique. J. Sol-Gel. Sci. and Tech, 19, p. 223-226.

Belleville P., Floch H. (1994a). Ammonia-hardening of porous silica antireflectives coatings. SPIE PROC. 2288, Sol-Gel Optics III, p. 25.

Belleville P., Floch H., Pegon M. (1994b). Sol-Gel Broadband Antireflective Coatings for Advanced Laser-Glass Amplifiers. SPIE PROC. 2288, Sol-Gel Optics III, p. 25.

Boscher C., Avice J., Belleville P., Piombini H., Vallé K. (2017). Étude du durcissement ammoniac de couche mince Sol-Gel. I2M, soumis.

Brinker J., Scherer G.-W. (1993). Sol-Gel Science: The Physics and Chemistry of Sol-Gel Processing. Academic Press, Inc., San Diego.

Guo Y.-J.,Zu X.-T., Jiang X.-D., Yuan X.-D., Xu S.-Z., Lv H-.B., Wang B.-Y. (2009). Effect of ammonia  treatment  on  laser-induced  damage  of  nano-porous  silica  film.  Optik  120, p. 437-441.

Klieber C., Hecksher T., Pezeril T., Torchinsky D.-H., Dyre J.-C., Nelson  K.-A. (2013). Mechanical spectra of glass-forming liquids. II. Gigahertz-frequency longitudinal and shear  acoustic  dynamics  in  glycerol  and  DC704  studied  by  time-domain  Brillouin scattering. J. Chem. Phys, 138, 12A544.

Mechri C., Ruello P., Gusev V. (2012). Confined coherent acoustic modes in tubular nanoporous alumina film probed by picosecond acoustics methods. New. J. Phys. 14, 023048.

Thomsen C., Grahn H.-T., Maris H.-J., Tauc J. (1986). Surface generation and detection of phonons by picosecond light pulse. Phys. Rev. B, 4129