Flexible distributed load shedding using a self-Adaptive multi-Agents system

Flexible distributed load shedding using a self-Adaptive multi-Agents system

Victor Lequay Mathieu Lefort Saber Mansour Salima Hassas 

Équipe SMA, LIRIS, Université Claude Bernard Lyon 1, Lyon, France

Ubiant SA, Lyon, France

Corresponding Author Email: 
victor.lequay@liris.cnrs.fr; mathieu.lefort@liris.cnrs.fr; salima.hassas@liris.cnrs.fr; saber.mansour@ubiant.com
Page: 
427-448
|
DOI: 
https://doi.org/10.3166/RIA.31.427-448
Received: 
|
Accepted: 
|
Published: 
31 August 2017
| Citation

OPEN ACCESS

Abstract: 

Load shedding is a cheap and eco-friendly way to maintain balance on the power grid, by matching consumption on production. In this context, the main problem is to coordinate smart buildings in order for them to be able to anticipate their need and also to collectively adjust their load shedding. We present a bottom-up approach on distributed loadshedding and propose a decentralized model based on gossip protocols. These algorithms provide a strong and scalable platform on top of which we built a self-evaluation mechanism ensuring enough reliability to be used on a large scale power grid, ie the ability to maintain a stable load shedding. In this article, we present our system and discuss the first results we obtained with it, before presenting some of its possible improvements.

Keywords: 

multi-agents system, load shedding, gossip algorithm, self-evaluation

1. Introduction
2. État de l’art de l’effacement diffus
3. Cadre général
4. Modèle pour l’effacement diffus
5. Expérimentations
6. Conclusion et perspectives
  References

Beal J., Berliner J., Hunter K. (2012). Fast Precise Distributed Control for Energy Demand Management. In Self-Adaptive and Self-Organizing Systems (SASO), 2012 IEEE Sixth In448 RIA. Volume 31 – no 4/2017 ternational Conference, p. 187–192. IEEE. (00000)

Callaway D. S., Hiskens I. A. (2011). Achieving Controllability of Electric Loads. Proceedings of the IEEE, vol. 99, no 1, p. 184–199. (00000)

Frey S., Diaconescu A., Menga D., Demeure I. (2013). A Holonic Control Architecture for a Heterogeneous Multi-Objective Smart Micro-Grid. In, p. 21–30. IEEE. (00000)

Hang J., Tian J.-X., Lin H.-G. (2007). Application of artificial neural network in intelligent building. In 2007 International Conference on Machine Learning and Cybernetics, vol. 7, p. 4215–4220. IEEE. (00006)

Kempe D., Dobra A., Gehrke J. (2003). Gossip-based computation of aggregate information. In Proceedings. 44th Annual IEEE Symposium on Foundations of Computer Science, 2003, p. 482–491. IEEE.

Lu S., Samaan N., Diao R., Elizondo M., Jin C., Mayhorn E. et al. (2011). Centralized and decentralized control for demand response. In Innovative Smart Grid Technologies (ISGT), 2011 IEEE PES, p. 1–8. IEEE. (00070)

Mohsenian-Rad A.-H., Wong V. W. S., Jatskevich J., Schober R., Leon-Garcia A. (2010). Autonomous Demand-Side Management Based on Game-Theoretic Energy Consumption Scheduling for the Future Smart Grid. IEEE Transactions on Smart Grid, vol. 1, no 3, p. 320–331. (00000)

Papalexopoulos A., Beal J., Florek S. (2013). Precise Mass-Market Energy Demand Management Through Stochastic Distributed Computing. IEEE Transactions on Smart Grid, vol. 4, no 4, p. 2017–2027. (00000)

Ramchurn S. D., Vytelingum P., Rogers A., Jennings N. (2011). Agent-based control for decentralised demand side management in the smart grid. In The 10th International Conference on Autonomous Agents and Multiagent Systems-Volume 1, p. 5–12. International Foundation for Autonomous Agents and Multiagent Systems. (00000)

Ranade V. V. (2010). Model and control for cooperative energy management. Raytheon BBN Technologies. (00000)

Ranade V. V., Beal J. (2010). Distributed control for small customer energy demand management. In 2010 Fourth IEEE International Conference on Self-Adaptive and Self-Organizing Systems, p. 11–20. IEEE. (00000)

Vedady Moghadam M. R., Ma R. T. B., Zhang R. (2014). Distributed Frequency Control in Smart Grids via Randomized Demand Response. IEEE Transactions on Smart Grid, vol. 5, no 6, p. 2798–2809. (00000)

Wuhib F., Dam M., Stadler R. (2010). A gossiping protocol for detecting global threshold crossings. Network and Service Management, IEEE Transactions, vol. 7, no 1, p. 42–57. (00000)

You H., Vittal V., Jung J., Liu C.-C., Amin M., Adapa R. (2002). An intelligent adaptive load shedding scheme. Proc. 2002 14-th PSCC, p. 17–6. (00013)