Design patterns for environments in multi-agent simulations

Design patterns for environments in multi-agent simulations

Philippe Mathieu
Sébastien Picault
Yann Secq

Univ. Lille, CNRS, Centrale Lille, UMR 9189 – CRIStAL (équipe SMAC) Centre de Recherche en Informatique Signal et Automatique de Lille F-59000 Lille, France

Corresponding Author Email:
30 April 2016
| Citation

Environment, usually regarded as one of the key concepts of MAS especially in simu- lation, is however rarely specified in a precise or even explicit way, since its implementation is assumed obvious or given. On the contrary,  we argue that the way of modeling space and connections  between agents in a simulation, allows only a few efficient implementation so- lutions.  We aim at formalizing  the fundamental purposes of the environment, i.e. helping the agents to find their neighbors, and providing them with information.  Thus, the search for a balance  between modeling  issues on the one hand (environment topology, nature of the in- formation) and the operational priorities on the other hand (execution efficiency, relevance of knowledge representation), outlines four environment patterns. Through this unifying approach, the usual, monolithical  and sometimes complex, “environment” of a multiagent simulation can be modeled and implemented as the combination  of severals patterns.


multiagent-based simulation, environments, parsimony, engineering, design patterns.

1. Introduction
2. Formalisation de la notion d’environnement
3. Quatre patterns d’environnements fondamentaux
4. Combinaison de patterns
5. Discussion
6. Conclusion

Bautin A., Lucidarme P., Guyonneau R., Simonin O., Lagrange S., Delanoue N. et al. (2013). Cart-O-Matic project: autonomous and collaborative multi-robot  localization, exploration and mapping. In Proc. int. conf. on intelligent robots and systems (IROS).

Behrens T. M., Hindriks K. V., Dix J. (2011, April). Towards an environment interface standard for agent platforms. Ann. Math. Artif. Intell., vol. 61, no 4, p. 261–295.

Colorni A., Dorigo M., Maniezzo V. (1991). Distributed optimization by ant colonies. In Proc.

1st european conf. on artifical life (ECAL), p. 134–142. Elsevier.Ferber J. (1995).  Les systèmes multi-agents. vers une intelligence collective.

InterÉditions. Ferber J., Michel F., Báez J.   (2005). AGRE: Integrating environments with organizations.

In D. Weyns et al. (Eds.), Proc. 1st int. workshop environments for multi-agent  systems (E4MAS), vol. 3374, p. 48–56. Springer.

Ferber J., Müller J.-P. (1996). Influences and reactions: A model of situated multiagent systems. In Proc. 2nd int. conf. on multiagent systems (icmas),  p. 72–79. AAAI Press.

Floyd R.  (1962). Algorithm 97: Shortest path. Communications of the ACM, vol. 5, no 6, p. 345.

Gamma E., Helm R., Johnson R., Vlissides  J.  (1994). Design Patterns, elements of reusable object-oriented software. Addison Wesley.

Gosper R.  (1984). Exploiting regularities in large cellular spaces.  Physica  D: Nonlinear Phenomena, vol. 10, no 1–2, p. 75–80.

Helleboogh A., Vizzari G., Uhrmacher A., Michel F. (2007). Modeling dynamic environments in multi-agent simulation. J. Auton. Agents and Multi-Agent  Systems (JAAMAS),  vol. 14, no 1, p. 87–116.

Kubera Y., Mathieu P., Picault S. (2010). Everything  can be agent! In W. van der Hoek et al. (Eds.), Proc. 9th int. joint conf. on auton. agents and multi-agent systems (AAMAS), p. 1547–1548.

Kubera Y., Mathieu P., Picault S. (2011). IODA: An interaction-oriented  approach for multi- agent based simulations. J. Auton. Agents and Multi-Agent Systems (JAAMAS), vol. 23, no 3, p. 303–343.

Latombe J.-C. (1991). Robot motion planning. Kluwer Academic Publishers.

Macal C., North M.  (2010). Tutorial on agent-based modelling  and simulation. Journal of Simulation, vol. 4, p. 151–162.

Mamei M., Zambonelli F. (2006). Theory and practice of field-based motion coordination in multiagent systems. Applied Artificial Intelligence, vol. 20, no 2–4, p. 305–326.

Mathieu  P., Picault S., Secq Y. (2015).  Design patterns for environments in multi-agent simu- lations. In Q. Chen et al. (Eds.), Proc. 18th conf. on principles and practice of multi-agent systems (prima), p. 678–686. Springer.

Mathieu  P., Secq Y.  (2012). Environment  updating and agent scheduling policies in agent- based simulators.   In J. Filipe, A. Fred (Eds.), Proc. 4th int. conf. on agents and artificial intelligence (ICAART), p. 170–175.

Maudet A., Touya G., Duchêne C., Picault S. (2015). Patterns multi-niveaux  pour les SMA.

In L. Vercouter, G. Picard (Eds.), 23e journées francophones sur les systèmes multi-agents (JFSMA), p. 19–28. Cépaduès.

Michel F. (2013).  Intégration  du calcul sur GPU dans la plate-forme de simulation multi-agent générique TurtleKit3. In S. Hassas, M. Morge (Eds.), 21e journées francophones sur les systèmes multi-agents (JFSMA), p. 189–198. Cépaduès.

Odell J., Van Dyke Parunak H., Fleischer M., Brueckner S.  (2003). Modeling agents and their environment. In Proc. 3rd int. conf. on agent-oriented software engineering (AOSE), p. 16–31. Springer.

Okuyama F., Bordini R., Rocha Costa A. da. (2005). ELMS: An environment description language for multi-agent simulation. In D. Weyns et al. (Eds.), Proc. 1st int. workshop environments for multi-agent systems (E4MAS), vol. 3374, p. 91–108. Springer.

Payet D., David D., Sébastien N. (2009). Auto-génération d’environnement : l’exemple d’infi- nite forest. In Z. Guessoum, S. Hassas (Eds.), 17e journées francophones sur les systèmes multi-agents (JFSMA), p. 165–174. Cepaduès.

Picault S., Mathieu  P.  (2011). An interaction-oriented model for multi-scale simulation. In T. Walsh (Ed.), Proc. 22nd int. joint conf. on artificial intelligence (IJCAI), p.  332–337. AAAI.

Ricci A., Viroli M., Omicini A. (2007). CArtAgO: A framework for prototyping artifact-based environments in MAS. In D. Weyns et al. (Eds.), Proc. 3rd int. workshop environments for multiagent systems (E4MAS),  vol. 4389, p. 67–86. Springer.

Russell S., Norvig P. (1995). Artificial intelligence. a modern approach. Prentice Hall.