OPEN ACCESS
Internet of Things (IoT) solutions guarantee the high performance requested by users and authorities in terms of efficiency, sustainability, connectivity, and durability for modern transportation infrastructures, allowing, at the same time, small size, low power consumption, wireless transmission and easily deployable solutions. IoT monitoring systems powered through Energy Harvesting Technologies (EHTs) are often indicated as the most efficient solutions to address these requests because of several advantages (e.g., remote management simplification, independence from electricity grid). In this paper, the most used EHTs in the field of road infrastructures were analyzed and, among them, a photovoltaic standalone system (PVSS) was selected and considered as the power supply unit of an electronic structural health monitoring (SHM) system. In particular, a network of sensor units (SUs), wirelessly connected to one central unit (CU), acting as an innovative road pavement monitoring system solution was taken in account as benchmark. Consequently, the objective of this study is to draw guidelines for the designer that can establish the proper sizing of the PVSS, based on the energy consumption of the SHM system, according to multiple factors, such as typology and number of sensors, frequency of measurements, duty cycle, and days of autonomy.
energy harvesting, internet of things, photovoltaic standalone system, road pavement, structural health monitoring system
Affordable Solar. Available: http://www.affordable-solar.com/learning-center/solar-basics/off-grid-system-sizing/
Almeida C. (2016). Integração de sensores inteligentes para a supervisão remota de subestações secundárias de distribuição de energia eléctrica, M.S. thesis, Dep. Phys., Univ. Sc. & Tech., Coimbra, PT, 2016.
Bataineh K., Taamneh Y. (2017). Performance analysis of stand-alone solar dish Stirling system for electricity generation. International Journal of Heat and Technology IJHT, Vol. 35, No. 1, pp. 498-508. https://doi.org/10.18280/ijht.350306
Chabane F., Laznek I., Bensahal D. (2018) Prediction of global solar radiation on the horizontal area with the effect of relative humidity part: I. Italian Journal of Engineering Science: Tecnica Italiana IJES, Vol. 61+1, No. 2, pp. 115-118. https://doi.org/10.18280/ijes.620209
Dementyev S., Taylor H. S., Smith J. (2013). Power consumption analysis of bluetooth low energy, ZigBee and ANT sensor nodes in a cyclic sleep scenario. Presented at IEEE-IWS13 Annual Meeting. https://doi.org/10.1109/IEEE-IWS.2013.6616827
Dezfooli A. S., Nejad F. M., Zakeri H., Kazemifard S. (2017). Solar pavement: A new emerging technology. Solar En., Vol. 149, pp. 272–284. https://doi.org/10.1016/j.solener.2017.04.016
Dhakar L. (2017). Triboelectric devices for power generation and self-powered sensing applications. https://books.google.it
Duarte F., Ferreira A. (2016). Energy harvesting on road pavements: State of the art. Presented at ICE– Energy16 Annual Meeting. https://doi.org/10.1680/jener.15.00005
ENEA. Available: http://www.solaritaly.enea.it/CalcRggmmIncl/Calcola1.php
Farris I., Pizzi S., Merenda M., Molinaro A., Carotenuto R., Iera A. (2017). 6lo-RFID: A framework for full integration of smart UHF RFID tags into the internet of things. IEEE Netw, Vol. 31, No. 5, pp. 66-73. https://doi.org/10.1109/MNET.2017.1600269
Fedele R., Praticò F. G., Carotenuto R., Della Corte F. G. (2017). Sensing road pavement health status through acoustic signals analysis. Presented at PRIME17 Annual Meeting. https://doi.org/10.1109/PRIME.2017.7974133
Felini C., Merenda M., Della Corte F. G. (2014). Dynamic impedance matching network for RF energy harvesting systems. Presented at RFID-TA14 Annual Meeting. https://doi.org/10.1109/RFID-TA.2014.6934206
Grace R. (2015). Sensors to support the IoT for infrastructure monitoring: Technology and applications for smart transport/smart buildings. Presented at MEPTEC-IoT15 Annual Meeting. http://www.meptec.org/Resources/15%20-%20Grace.pdf
Guo L., Lu Q. (2017). Modeling a new energy harvesting pavement system with experimental verification. Appl En., Vol. 208, pp. 1071–1082. https://doi.org/10.1016/j.apenergy.2017.09.045
Hasni H., Alavi A. H., Chatt K., Lajnef N. (2017). A self-powered surface sensing approach for detection of bottom-up cracking in asphalt concrete pavements: Theoretical/numerical modelling. Constr & Build Mat., Vol. 144, pp. 728–746. https://doi.org/10.1016/j.conbuildmat.2017.03.197
Hyder F., Sudhakar K., Mamat R. (2018). Solar PV tree design: A review. Renew & Sust En Rev., Vol. 82, pp. 1079–1096. https://doi.org/10.1016/j.rser.2017.09.025
JRC Europe. Available: http://re.jrc.ec.europa.eu/pvgis/apps4/pvest.php?lang=it&map=europe#
Kazem H. A., Khatib T., Sopian K. (2013). Sizing of a standalone photovoltaic/battery system at minimum cost for remote housing electrification in Sohar, Oman. En & Build., Vol. 61, pp. 108–115. https://doi.org/10.1016/j.enbuild.2013.02.011
Lafarge B., Delebarre C., Grondel S., Curea O., Hacala A. (2015). Analysis and optimization of a piezoelectric harvester on a car damper. Presented at ICU15 Annual Meeting. https://doi.org/10.1016/j.phpro.2015.08.202
Lee J., Choi B. (2014). Development of a piezoelectric energy harvesting system for implementing wireless sensors on the tires. En Conv & Man. Vol. 78, pp. 32–38. https://doi.org/10.1016/j.enconman.2013.09.054
Mannion P. (2017). Comparing low-power wireless technologies (Part 1). Digi-Key's North American Editors. Available: https://www.digikey.it/en/articles/techzone/2017/oct/comparing-low-power-wireless-technologies
Mekki K., Bajic E, Chaxel F., Meyer F. (2018). A comparative study of LPWAN technologies for large-scale IoT deployment. https://doi.org/10.1016/j.icte.2017.12.005
Merenda M., Farris I., Felini C., Militano L., Spinella S. C., Della Corte F. G., Iera A. (2014). Performance assessment of an enhanced RFID sensor tag for long-run sensing applications. 13th IEEE SENSORS Conference. https://doi.org/10.1109/ICSENS.2014.6985105
Merenda M., Felini C., Della Corte F. G. (2014). An autonomous and energy efficient smart sensor platform. 13th IEEE SENSORS Conference, pp. 1208-1211. https://doi.org/10.1109/ICSENS.2014.6985226
Microchip. Datasheet device: ATSAMD20E17. Available: http://www.microchip.com
Oregon Embedded. Available: http://www.oregonembedded.com/batterycalc.htm
Pan P., Wu S., Xiao Y., Liu G. (2015). A review on hydronic asphalt pavement for energy harvesting and snow melting. Renew & Sust En Rev., Vol. 48, pp. 624–634. https://doi.org/10.1016/j.rser.2015.04.029
Papagiannakis A. T., Dessouky S., Montoya A., Roshani H. (2016). Energy harvesting from roadways. Presented at SEIT16 Annual Meeting. https://doi.org/10.1016/j.procs.2016.04.164
Perles A., Pérez-Marín E., Mercado R., Segrelles J. D., Blanquer I., Zarzo M., Garcia-Diego F. J. (2018). An energy-efficient internet of things (IoT) architecture for preventive conservation of cultural heritage. Fut. Gen. Com. Sy., Vol. 81, pp. 566–581. https://doi.org/10.1016/j.future.2017.06.030
Pop M. D., Proștean O. (2018). A comparison between smart city approaches in road traffic management. Pr Soc & Beh Sc., Vol. 238, pp. 29–36. https://doi.org/10.1016/j.sbspro.2018.03.004
Praticò F. G., Della Corte F. G., Merenda M. (2017). Self-powered sensors for road pavements. Presented at CEW16 Annual Meeting. https://doi.org/10.1201/9781315643274-151
Praticò F. G., Moro A., Ammendola R. (2009). Factors affecting variance and bias of non-nuclear density gauges for PEM and DGFC. The Baltic J Road & Brid. Eng., Vol. 4, No. 3, pp. 99–107. https://doi.org/10.3846/1822-427X.2009.4.99-107
PV-tree. http://bucket.sunshineworks.com/images/solar-panel-mounts/pv-tree/pv-tree-1r.jpg
Saadon S., Sideka O. (2015). Micro-electro-mechanical system (MEMS)-based piezoelectric energy harvester for ambient vibrations. Proc Soc & Beh Sc., Vol. 195, pp. 2353–2362. https://doi.org/10.1016/j.sbspro.2015.06.198
Silva D. (2016). World’s first solar road opens in Normandy, France. NBC NEWS. Available: https://www.nbcnews.com/science/science-news/world-s-first-solar-road-opens-normandy-france-n699351
Sinha R. S., Wei Y., Hwang S. H. (2017). A survey on LPWA technology: LoRa and NB-IoT. ICT Expr., Vol. 3, No. 1, pp. 14–21. https://doi.org/10.1016/j.icte.2017.03.004
SODA. Available: http://www.soda-is.com/eng/services/services_radiation_free_eng.php
STMicroelectronics. Datasheet device: LSM6DS3. Available: http://www.st.com
Wang H., Jasim A., Chena X. (2018). Energy harvesting technologies in roadway and bridge for different applications – A comprehensive review. Appl En., Vol. 212, pp. 1083–1094. https://doi.org/10.1016/j.apenergy.2017.12.125
Xiang B., Cao X., Yuan Y., Suna L., Wu H., Haghighat F. (2018). A novel hybrid energy system combined with solar-road and soil-regenerator: Dynamic model and operational performance. En Conv & Man., Vol. 156, pp. 376–387. https://doi.org/10.1016/j.enconman.2017.11.066
Xiong H., Wang L. (2016). Piezoelectric energy harvester for public roadway: On-site installation and evaluation. Appl En., Vol. 174, pp. 101–107. https://doi.org/10.1016/j.apenergy.2016.04.031
Xu X., Cao D., Yang H., He M. (2017). Application of piezoelectric transducer in energy harvesting in pavement. Int J Pav Res & Tech. https://doi.org/10.1016/j.ijprt.2017.09.011
Yang H., Wang L., Zhou B., Wei Y., Zhao Q. (2018). A preliminary study on the highway piezoelectric power supply system. Int J Pav Res & Tech., Vol. 11, pp. 168–175. https://doi.org/10.1016/j.ijprt.2017.08.006
Youssef A. M. (2018). Operations of electric vehicle traction system. Mathematical Modelling of Engineering Problems, Vol. 5, No. 2, pp. 51-57. https://doi.org/10.18280/mmep.050201
Zito F., Aquilino F., Fragomeni L., Merenda M., Della Corte F. G. (2010) CMOS wireless temperature sensor with integrated radiating element. Sensors and Actuators, A: Physical, Vol. 158, No. 2, pp. 169-175. https://doi.org/10.1016/j.sna.2009.12.014