Experimental study of performance dependence on absorber and number of air inlets of solar updraft tower

Experimental study of performance dependence on absorber and number of air inlets of solar updraft tower

Rabie NaceurAmaria Ould Abbas Mohamed Amine Bezzerrouk Mohamed Bousmaha Ahmed Akriche Khaled Djakhdane Ismail Hattabi 

Laboratoire de matériaux et énergies Renouvelables, département de Physique, Faculté des Sciences, Université Abu Bakr Belkaid, B.P 119, Tlemcen-13000, Algérie

Conception of Materials and Electronic Devices in Diagnostic in Veterinary Medicine, Reproduction of Farm Animals LABORATORY, Veterinary Sciences Institute, Ibn Khaldoun University, Tiaret-14000, Algeria

Physics Department, Faculty of Materials Sciences, Ibn Khaldoun University, Tiaret-14000, Algeria

Corresponding Author Email: 
30 September 2018
| Citation



The objective of this study is to investigate the effect of absorber material under collector and number of air inlet in the collector of small pilot solar chimney power plant. Experimental prototype setup in Tiaret, Algeria, was constructed which consisted of a chimney with 6 m height and 3 m diameter of collector. The study focused to carry out several measurements such as air velocity, air temperature and humidity inside the station. From results, it was found that the black plastic as absorber and two air inlets are the appropriate parameters for this study. The air temperature increased to reach a maximum value of 78 °C, which generates an updraft air velocity in the chimney with a maximum value of 2.8 m/s. These results can be used as reliable study of the performance and the efficiency of solar chimney power plant.


solar chimney, collector, temperature, air velocity, humidity

1. Introduction
2. Experimental set-up
3. Results and discussion
4. Conclusion

Al-Dabbas M. A. (2012). The first pilot demonstration: solar updraft tower power plant in Jordan. International Journal of Sustainable Energy, Vol. 31, No. 6, pp. 399-410. http://dx.doi.org/10.1080/1478646X.2011.589516

Al-Kayiem H. H., Aja O. C. (2016). Historic and recent progress in solar chimney power plant enhancing technologies. Renewable and Sustainable Energy Reviews, Vol. 58, pp. 1269-1292. http://dx.doi.org/10.1016/j.rser.2015.12.331

Arduino Mega. (2016). https://www.arduino.cc/en/Main/ArduinoBoardMega/

Chaware P., Sewatkar C. M. (2017). Effects of tangential and radial velocity on the heat transfer for flow through pipe with twisted tape insert-turbulent flow. International Journal of Heat and Technology, Vol. 35, No. 4, pp. 811-820. http://dx.doi.org/10.18280/ijht.350417

Ghalamchi M., Kasaeian A., Ghalamchi M. (2015). Experimental study of geometrical and climate effects on the performance of a small solar chimney. Renewable and Sustainable Energy Reviews, Vol. 43, pp. 425-431. http://dx.doi.org/10.1016/j.rser.2014.11.068

Ghalamchi M., Kasaeian A., Ghalamchi M., Mirzahosseini S. A. (2016). An experimental study on the thermal performance of a solar chimney with different dimensional parameters. Renewable Energy, Vol. 91, pp. 477-483. http://dx.doi.org/10.1016/j.renene.2016.01.091

Haaf W. (1984). Part II, Premilinary test results from manzanares pilot plant. International Journal of Energy Research, Vol. 2, pp. 141-161.

Haaf W., Friedrich K., Mayr G., Schlaich J. (1983). Part I: Principle and construction of the pilot plant in manzanares. International Journal of Solar Energy, Vol. 2, No. 1, pp. 3-20. http://dx.doi.org/10.1080/01425918308909911

Jemli M. R., Naili N., Farhat A. (2017). Experimental investigation of solar tower with chimney effect installed in CRTEn, Tunisia. International Journal of Hydrogen Energy, Vol. 42, No. 13, pp. 8650-8660. http://dx.doi.org/10.1016/j.ijhydene.2016.07.044

Kanoglu M. (2015). Thermodynamics: an engineering approach. McGraw-Hill. Renewable Energy, pp. 3-84.

Kasaeian A. B., Heidari E., Vatan S. N. (2011). Experimental investigation of climatic effects on the efficiency of a solar chimney pilot power plant. Renewable and Sustainable Energy Reviews, Vol. 15, No. 9, pp. 5202-5206. http://dx.doi.org/10.1016/j.rser.2011.04.019

Kasaeian A., Ghalamchi M., Ghalamchi M. (2014). Simulation and optimization of geometric parameters of a solar chimney in Tehran. Energy Conversion and Management, Vol. 83, pp. 28-34. http://dx.doi.org/10.1016/j.enconman.2014.03.042.

Kasaeian A., Mahmoudi A. R., Astaraei F. R., Hejab A. (2017). 3D simulation of solar chimney power plant considering turbine blades. Energy Conversion and Management, Vol. 147, pp. 55-65. http://dx.doi.org/10.1016/j.enconman.2017.05.029

LM35 Precision Centigrade Temperature Sensors. (2016). http://www.ti.com/lit/ds/symlink/lm35.pdf

Lorenzo E. (2002). Las chimeneas solares: De una propuesta española en 1903 a la Central de Manzanares. pp. 1-6.

Manual Air Humidity Meter PCE-THA 10. (2016). https://www.pce-instruments.com/english/slot/2/download/5855531/manual-air-humidity-meter-pce-tha10_1069528.pdf

Ming T., Liu W., Pan Y., Xu G. (2008). Numerical analysis of flow and heat transfer characteristics in solar chimney power plants with energy storage layer. Energy Conversion and Management, Vol. 49, No. 10, pp. 2872-2879. http://dx.doi.org/10.1016/j.enconman.2008.03.004

Nasirivatan S., Kasaeian A., Ghalamchi M., Ghalamchi M. (2015). Performance optimization of solar chimney power plant using electric/corona wind. Journal of Electrostatics, Vol. 78, pp. 22-30. http://dx.doi.org/10.1016/j.elstat.2015.09.007

Ninic N. (2006). Available energy of the air in solar chimneys and the possibility of its ground-level concentration. Solar Energy, Vol. 80, No. 7, pp. 804-811. http://dx.doi.org/10.1016/j.solener.2005.05.010

Pasumarthi N., Sherif S. A. (1998). Experimental and theoretical performance of a demonstration solar chimney model — Part II : Experimental and theoretical results. International Journal of Energy Research, Vol. 22, No. 5, pp. 443-461. http://dx.doi.org/10.1002/(SICI)1099-114X(199804)22:5<443::AID-ER381>3.0.CO;2-V

Patel S. K., Prasad D., Ahmed M. R. (2014). Computational studies on the effect of geometric parameters on the performance of a solar chimney power plant. Energy Conversion and Management, Vol. 77, pp. 424-431. http://dx.doi.org/10.1016/j.enconman.2013.09.056

Ribelles G. J. L., Diazcalleja R., Ferguson R., Cowie J. M. G. (1987). Glass transition and physical ageing in plasticized poly(vinyl chloride). Polymer, Vol. 28, No. 13, pp. 2262-2266. http://dx.doi.org/10.1016/0032-3861(87)90385-5

Summers J. W. (2008). The melting temperature (or not melting) of poly(vinyl chloride). Journalof Vinyl Addit Technol, Vol. 14, pp. 105-109. http://dx.doi.org/10.1002/vnl.20151

Trieb F., Langniβ O., Klaiβ H. (1997). Solar electricity generation—A comparative view of technologies, costs and environmental impact. Solar Energy, Vol. 59, No. 1-3, pp. 89-99. http://dx.doi.org/10.1016/S0038-092X(97)80946-2

Xu G., Ming T., Pan Y., Meng F., Zhou C. (2011). Numerical analysis on the performance of solar chimney power plant system. Energy Conversion and Management, Vol. 52, No. 2, pp. 876-883. http://dx.doi.org/10.1016/j.enconman.2010.08.014

Zhou X. P., Yang J. K. (2008). Temperature field of solar collector and application potential of solar chimney power systems in China. Journal of the Energy Institute, Vol. 81, No. 1, pp. 25-30. http://dx.doi.org/10.1179/174602208X269364

Zhou X., Yang J. K., Xiao B., Hou G. (2007). Experimental study of temperature field in a solar chimney power setup. Applied Thermal Engineering, Vol. 27, No. 11-12, pp. 2044-2050. http://dx.doi.org/10.1016/j.applthermaleng.2006.12.007