Étude statistique du fouillis de mer à partir de lois α-stables

Étude statistique du fouillis de mer à partir de lois α-stables

Anthony Fiche Ali Khenchaf  Jean-Christophe Cexus  Arnaud Martin  Majid Rochdi 

LabSTICC UMR CNRS 6285, ENSTA-Bretagne 2 rue François Verny, F-29806, Brest cedex 9

Irisa, Université de Rennes 1 Rue Édouard Branly, BP 32019, F-22302, Lannion cedex

Corresponding Author Email: 
{fichean, khenchal, cexusjc, rochdma}@ensta-bretagne.fr
Page: 
243-271
|
DOI: 
https://doi.org/10.3166/TS.30.243-271
Received: 
N/A
|
Accepted: 
N/A
|
Published: 
31 August 2013
| Citation

OPEN ACCESS

Abstract: 

In this article, and to contribute to the study of the problem of maritime surveillance, we propose to characterize sea clutter using a statistical approach. In general, the statistical study of sea clutter requires to have significant material installed in a maritime environment, this to acquire a database of real signals broadcast by a sea surface. Therefore, in this paper, we choose to generate the sea surface by using the Elfouhaily sea spectrum. On the other hand, the Physical Optics approximation is used to calculate the diffusion coefficient of a sea surface. In this sense, a database of scattering coefficients is well established (for the fixed electromagnetic characteristics of the sea water), by varying the observation geometry, the polarization of the wave (at the emitter and at the receiver), the wind speed and wind direction. To analyze the distribution of electromagnetic scattering coefficients, we propose to use for the first time, the -ߙstable distribution, we compare the results obtained with those given by the two commonly used in statistical distributions: the Weibull and ࣥlaw. The Kolmogorov-Smirnov evidence is used to show that the -ߙstable model is best suited to our database. Therefore, we look more specifically the influence of the polarization, the wind speed and wind direction on the parameters of -ߙstable distributions. The parameter ߜparticular position allows to discriminate the probability density of the parameter ߜfor some configurations.

RÉSUMÉ

Dans cet article, en vue d’une problématique de surveillance maritime, nous proposons de caractériser le fouillis de mer en utilisant une approche statistique. En général, l’étude statistique du fouillis de mer nécessite d’avoir des moyens matériels importants, installés dans un environnement maritime, permettant d’acquérir une base de signaux réels diffusés par une surface maritime. Par conséquent, dans ce papier, nous choisissons d’une part, de générer une surface maritime à partir du spectre d’Elfouhaily. D’autre part, l’optique physique est utilisée pour calculer le coefficient de diffusion d’une surface maritime. Dans ce sens, une base de données de coefficient de diffusion est ainsi constituée, pour des caractéristiques électromagnétiques de l’eau de mer fixées, en faisant varier la géométrie d’observation, la polarisation de l’onde (à l’émission et à la réception), la vitesse du vent et la direction du vent. Pour analyser la distribution des coefficients de diffusion électromagnétique, nous proposons l’utilisation pour la première fois, de la loi -ߙstable que nous comparons aux résultats obtenus avec les distributions statistiques généralement utilisées : la loi de Weibull et la loi .ࣥLe test de Kolmogorov-Smirnov permet d’affirmer que le modèle alpha-stable est le plus adapté à notre base de données. Par conséquent, nous regardons plus particulièrement l’influence de la polarisation, de la vitesse du vent et de la direction du vent sur les paramètres des distributions -ߙstables. Le paramètre de position delta permet notamment de discriminer les densités de probabilité du paramètre ߜpour certaines configurations.

1. Introduction
2. Description De La Surface Maritime
3. Les Modèles De Diffusion Électromagnétique
4. Simulation Et Résultats
5. Conclusion
  References

Abramowitz M., Stegun I.A. (1972). Handbook of mathematical functions with formulas, graphs, and mathematical tables. Dover publications.

Achim A., Tsakalides P., Bezerianos, A. (2003). SAR image denoising via Bayesian wavelet shrinkage based on heavy-tailed modeling. IEEE Transactions on Geoscience and Remote Sensing, vol. 41, n° 8, p. 1773-1784.

Arnold-Bos A. (2010). La surveillance maritime en imagerie radar bistatique : théorie, simulation, contribution à la détection automatique du sillage de navires. Thèse de l’Université de Bretagne Occidentale.

Arnold-Bos A., Khenchaf A., Martin A. (2007a). Bistatic radar imaging of the marine environment. Part 1: theoretical background. IEEE Transactions on Geoscience and Remote Sensing, Special Issue on Synthetic Aperture Radar, vol. 45, n° 11, p. 3372-3383.

Arnold-Bos A., Khenchaf A., Martin A. (2007b). Bistatic radar imaging of the marine environment. Part 2: simulation and results analysis. IEEE Transactions on Geoscience and Remote Sensing, Special Issue on Synthetic Aperture Radar, vol. 45, n° 11, p. 3384-3396.

Antipov I. (1998). Analysis of sea clutter data. Rapport technique Department Science and Technology Organisation.

Awada A., Ayari A., Khenchaf A., Coatanhay A. (2006). Bistatic scattering from an anistropic sea surface: numerical comparison between the first-order SSA and the TSM models. Waves in Random and Complex Media, vol. 16, n° 3, p. 383-394.

Ayari M. (2006). Détection électromagnétique d’éléments polluants au-dessus de la surface maritime. Thèse de l’Université de Bretagne Occidentale.

Banerjee A., Burlina P., Chellappa, R. (1999). Adaptive target detection in foliage-penetrating SAR images using alpha-stable models. IEEE Transactions on Image Processing, vol. 8, n° 12, p. 1823-1831.

Barrick D. (1968). Rough surface scattering based on the specular point theory. IEEE Transactions on Antennas and Propagation, vol. 16, n° 4, p. 449-454.

Beckmann P., Spizzichino A. (1987). The scattering of electromagnetic waves from rough surfaces. vol. 2, Artech House Publishers.

Bennani Y., Comblet F., Khenchaf A. (2012). RCS of complex targets: original representation validate by measurements - Application to ISAR imagery. IEEE Transactions on Geoscience and Remote Sensing, vol. 50, n° 10, p. 3882-3891.

Cole K.S., Cole R.H. (1942). Dispersion and absorption in dielectrics II. Direct current characteristics. The Journal of Chemical Physics, vol. 10, n° 2, p. 98-105.

Cowper M. (2000). Nonlinear processing of non-Gaussian stochastic and chaotic deterministic time series. PhD thesis of University of Edinburgh, Edinburgh, Scotland.

Cox C., Munk W. (1956). Slopes of the sea surface deduced from photographs of sun glitter. Bulletin of the Scripps Institution of Oceanography, vol. 6, n° 9, p. 401-488.

Cox C., Munk W. (1954). Statistics of the sea surface derived from sun glitter. Journal of Marine Research, vol. 13, n° 2, p. 198-227.

Daba J.S., Bell M.R. (1995). Statistics of the scattering cross-section of a small number of random scatterers. IEEE Transactions on Antennas and Propagation, vol. 43, n° 8,p. 773-783.

Debye P.J.W. (1929). Polar molecules. The Chemical Catalog Company.

Denny W.M. (1997). K-distributed sea clutter: performance predictions made easy. Radar’97, Edinburgh, Scotland.

Dong Y. (2004). Clutter spatial distribution and new approaches of parameter estimation for Weibull and K-distributions. Rapport technique Department Science and Technology Organisation.

Dos Santos M.L.X., Rabelo N.R. (1986). On the Ludwig integration algorithm for triangular subregions. Proceedings of the IEEE, vol. 74, n° 10, p. 1455-1456.

Eckart C. (1953). The scattering of sound from the sea surface. Journal of the Acoustical Society of America, vol. 25, n° 3, p. 556-570.

Elfouhaily T., Chapron B., Katsaros K., Vandemark, D. (1997). A unified directional spectrum for long and short wind-driven waves. Journal of Geophysical Research, vol. 102, n°C7, p. 781-796.

Embrechts P., Kluppelberg C., Mikosch, T. (1997). Modelling extreme events: For Insurance and Finance. Springer.

Fay F.A., Clarke J., Peters R.S. (1977). Weibull distribution applied to sea clutter. Radar’77, London, England.

Franceschetti G., Migliaccio M., Riccio D. (1998). On ocean SAR raw signal simulation. IEEE Transactions on Geoscience and Remote Sensing, vol. 36, n° 1, p. 84-100.

Franceschetti G., Iodice A., Riccio D., Ruello G., Siviero R. (2002). SAR raw signal simulation of oil slicks in ocean environments. IEEE Transactions on Geoscience and Remote Sensing, vol. 40, n° 9, p. 1935-1949.

Freedman D., Diaconis P. (1981). On the histogram as a density estimator: L2 theory. Probability Theory and Related Fields, vol. 57, n° 4, p. 453-476.

Fung A., Lee K. (1982). A semi-empirical sea-spectrum model for scattering coefficient estimation. IEEE Journal of Oceanic Engineering, vol. 7, n° 4, p. 166-176.

Gelpi C., Norris K. (2003). Estimated surface-wave contributions to radar Doppler velocity measurements of the ocean surface. Remote Sensing of Environment, vol. 87, n° 2, p. 75-79.

Hair T., Lee T., Baker C.J. (1991). Statistical properties of multifrequency high-rangeresolution sea reflections. IEEE Proceedings of Radar and Signal Processing, vol. 138, n° 2, p. 75-79.

Hasselmann K., Barnett T.P., Bouws E., Carlson H., Cartwright D.E., Enke K., Ewing J.A.,

Gienapp H., Hasselmann D.E., Kruseman P., Meerburg A., Müller P., Olbers D.J., Richter

K., Sell W., Walden H. (1973). Measurements of wind-wave growth and swell decay during the Joint North Sea Wave Project (JONSWAP). Deutches Hydrographisches Institut, vol. 8, n° 12.

Jakeman E., Pusey P. (1976). A model for non-Rayleigh sea echo. IEEE Transactions on Antennas and Propagation, vol. 24, n° 6, p. 806-814.

Jakeman E., Pusey P.N. (1977). Statistics of non-Rayleigh microwave sea echo. Radar’77, London, England.

Khenchaf A. (2001). Bistatic scattering and depolarization by a Randomly Rough Surfaces: application to the natural rough surfaces in X-band. Waves in Random Media, vol. 11,n° 2, p. 61-89.

Lévy P. (1924). Théorie des erreurs: La loi de Gauss et les lois exceptionnelles. Bulletin de la Société Mathématique de France, vol. 52, p. 49-85.

Liao M., Wang C., Wang Y., Jiang L. (2008). Using SAR images to detect ships from sea clutter. IEEE Geoscience and Remote Sensing Letters, vol. 5, n° 2, p. 194-198.

Nohara T.J., Haykin S., Currie B.W., Krasnor, C. (1989). Towards the improved detection of small ice targets in K-distributed sea clutter. International symposium on noise and clutter rejection in radars and imaging sensors.

Pierce R.D. (1996). RCS characterization using the alpha-stable distribution. Radar’96, Ann Arbor, United-States.

Pierson W.J., Moskowitz L. (1964). A proposed spectral form for fully developed wind seas based on the similarity theory of SA Kitaigorodskii. Journal of Geophysal Research, vol. 69, n° 24, p. 5181-5190.

Phillips O.M. (1958). The equilibrium range in the spectrum of wind-generated waves. Journal of Fluid Mechanics, vol. 4, p. 426-434.

Rice S.O. (1951). Reflection of electromagnetic waves from slightly rough surfaces. Communications on pure and applied mathematics, vol. 4, n° 2-3, p. 352-378.

Rochdi M. (2011). Signature électromagnétique bistatique d’une cible complexe placée sur une surface maritime rugueuse. Modélisation, simulation et expérimentation. Thèse de l’Université de Bretagne Occidentale.

Schleher D.C. (1976). Radar detection in Weibull clutter. IEEE Transactions on Aerospace and Electronic Systems, vol. 12, n° 6, p. 736-743.

Scott D.W. (2009). Sturges’ rule. Wiley Interdisciplinary Reviews: Computational Statistics, vol. 1, n° 3, p. 303-306.

Scott D.W. (2010). Scott’s rule. Wiley Interdisciplinary Reviews: Computational Statistics, vol. 2, n° 4, p. 497-502.

Stogryn A. (1967). Electromagnetic scattering from rough, finitely conducting surfaces. Radio Science, vol. 2, p. 415-428.

Trunk G.V., George S.F. (1970). Detection of targets in non-Gaussian sea clutter. IEEE Transactions on Aerospace and Electronic Systems, vol. 6, n° 5, p. 620-628.

Ulaby F.T., Moore R.K., Fung A.K. (1986). Microwave remote sensing: Active and passive. Radar remote sensing and surface scattering and emission theory, vol. 2, Artech House Publishers.

Valenzuela G.R., Laing, M.B. (1971). On the statistics of sea clutter. Rapport technique NRL Report 7349.

Wackerman C.C., Friedman K., Pichel W.G., Clemente-Colon P., Xiaofeng Li. (2001). Automatic detection of ship in radarsat-1 sar imagery. Canadian Journal of Remote Sensing, vol. 27, n° 2, p. 371-378.

Wang C., Liao M., Li X., Jiang L., Chen X. (2008). Ship detection algorithm in SAR images based on Alpha-stable model. Sensors, vol. 8, p. 4948-4960.

Ward K.D., Watts S. (1985). Radar sea clutter. Microwave Journal, vol. 28, n° 6, p. 109-121.

Weibull W. (1939). The phenomenon of rupture in solids. Generalstabens Litografiska Anst.

Zolotarev V.M. (1986). One dimensional stable distribution. American Mathematical society.