Application d’un cache 2D prédictif à l’accélération de la rétroprojection TEP 2D

Application d’un cache 2D prédictif à l’accélération de la rétroprojection TEP 2D

2D PET backprojection acceleration through a 2D predictive cache

Stéphane Mancini Nicolas Gac  Nicolas Gac  Olivier Bourrion  Olivier Rosseto 

Laboratoire des Images et des Signaux, Grenoble, France

Laboratoire de Physique Subatomique et Cosmologie, Grenoble, France

14 October 2005
31 December 2006
| Citation



Reduction of image reconstruction time is a key point for the development and spreading of PET scans. Thus this article presentes a hardware/software architecture which aims at accelerating the 2D reconstruction on a SoPC (System on Programmable Chip) plateform, the new generation of reconfigurable chip. Issue posed by the latency of memory accesses has been solved thanks to the 2D Aptative and Predictive cache (2D-AP cache).


Le développement et la diffusion des équipements TEP passent par la réduction des temps de calcul de la reconstruction des images acquises. Aussi cet article présente une solution mixte logicielle/matérielle pour l'accélération de la reconstruction 2D sur une plateforme SOPC (System on Programmable Chip), la nouvelle génération de circuits reconfigurables. Le verrou technologique posé par la latence des accès mémoire est levé grâce au cache 2D Adaptatif et Prédictif (cache 2D-AP).


PET imaging, Reconstruction, Backprojection, Algorithm Architecture Adequacy, Hardware/software partitionning, System on Programmable Chip, Cache, FPGA

Mots clés

Imagerie TEP, Reconstruction, Rétro-projection, Adéquation Algorithme Architecture, Partitionnement matériel/logiciel, System on Programmable Chip, Cache, FPGA

1. Introduction
2. Objectifs
3. Architecture
4. Résultats
5. Conclusion

[1] S. BASU, Y. BRESLER, O (n2logn) backprojection algorithm for tomography. IEEE Trans. Med. Imaging, 19(8):1760-1773, 2000.

[2] D. BRASSE, B. HUMBERT, C. MATHELIN, M.C. RIO, J.L. GUYONNET, Towards an inline reconstruction architecture for micro-ct systems. Phys. Med. Biol., 50:5799-5811, 2005.

[3] S. CORIC, M. LEESER, E. MILLER, M. TREPANIER, Parallelbeam backprojection: an FPGA implementation optimized for medical imaging. The Journal of VLSI Signal Processing-Systems for Signal, Image, and Video Technology, 39(3), 2005.

[4] S. CORIC, M. LEESER, E. MILLER, M. TREPANIER, Parallelbeam backprojection: an fpga implementation optimized for medical imaging. In FPGA '02: Proceedings of the 2002 ACM/SIGDA tenth international symposium on Field-programmable gate arrays, pages 217-226, New York, NY, USA, 2002. ACM Press.

[5] A. REILHAC et al, Pet-sorteo: validation and development of database of simulated pet volumes. IEEE Tr. Nucl. Sci., 52(5):1321-1328, October 2005.

[6] P. GRANGEAT, La Tomographie medicale. Hermes, 2002.

[7] D. KIM, R. MANAGULI, Y. KIM, Data cache and direct memory access in programming mediaprocessors. IEEE Micro, 21(4):33-42, 2001.

[8] J.F. LECOMTE, Quantification d'images tomographiques 3D et détection appliquées à l'imagerie cérébrale fonctionnelle individuelle. PhD thesis, Universite de Caen, 1997.

[9] M. W. LENOX, T. GREMILLION, S. MILLER, J. W. YOUNG, Coincidence time alignment for planar pixellated positron emission tomography detector arrays. In IEEE Nuclear Science Symposium, pages 1952-1954. IEEE Computer Society, 2001.

[10] X. LI, J. NI, G. WANG, Parallel iterative cone beam ct image reconstruction on a pc cluster. Journal of X-Ray SCiences and technology, 13:1-10, 2005.

[11] B. DE MAN, S. BASU, Distance-driven projection and backprojection in three dimensions. Phys. Med. Biol, 49:2463-2475, 2004.

[12] A. MEHTA, J. ROTEM, Fpga co-processing solutions for signal processing applications. ece, pages 25-26, 2005.

[13] K. MUELLER, R. YAGEL, Rapid 3d cone-beam reconstruction with sart using texture mapping hardware. IEEE Trans. Med. Imag, 19(12):1227-1237, 2000.

[14] D.M. PETTERSEN, S. MIKKELSEN, J. TALEBI, D. MEIER, A readout asic for spect. IEEE Trans. Nucl. Sci, 52(3):764--771, 2005.

[15] T. PIPATSRISAWAT, A. GACIC, F. FRANCHETTI, M. PÜSCHEL, J. M. MOURA, Performance analysis of the filtered backprojection image reconstruction algorithms. In ICASSP 2005, volume~5, pages 153-156, 2005.

[16] K. RAJAN, L. M. PATNAIK, Cbp and art image reconstruction algorithms on media and dsp processors. Microprocessors and Microsystems, 25(5):233-238, 2001.

[17] T. RODET, L. DESBAT, P. GRANGEAT, Parallel algorithm based on a frequential decomposition for dynamic 3d computed tomography. In Parallel and Distributed Processing Symposium, pages 14-21. IEEE Computer Society, 2003.

[18] P. SACK, A.C. ELSTER, Fast mpi broadcasts through reliable multicasting. In 6th International Conference on Applied Parallel Computing Advanced Scientific Computing, volume 2367 of Lecture Notes In Computer Science, pages 445-453. Springer Verlag, London, UK, June 2002.

[19] L. G. STRAUSS, A. DIMITRAKOPOULOU-STRAUSS, G. KONTAXAKIS, Performance characteristics of iterative image reconstruction techniques for routine use in positron emission tomography. Alasbimn Journal, 2001.

[20] P. TOFT., The Radon Transform : Theory and Implementation. PhD thesis, Technical University of Denmark, Copenhagen, 1996.

[21] S. VOLLMAR, C. MICHEL, J. T. TREFFERT, D. F. NEWPORT, M. CASEY, C. KNOSS, K. WIENHARD, X. LIU, M. DEFRISE, W.-D. HEISS, HeinzelCluster: accelerated reconstruction for FORE and OSEM3D. IOP Phys. Med. Biol, 47:2651-2658, 2002.

[22] F. XU, K. MUELLER, Accelerating popular tomographic reconstruction algorithms on commodity pc graphics hardware. IEEE Trans. Nucl. Sci, 52(3):654-664, 2005.

[23] J.W. YOUNG, J.C. MOYERS, M. LENOX, Fpga based front-end electronics for a high resolution PET scanner. IEEE Trans. Nuclear Science, 47:1676-80, 2000