Segmentation multiéchelle de nappes d'hydrocarbure - Multiscale Oil Slicks Segmentation

Segmentation multiéchelle de nappes d'hydrocarbure

Multiscale Oil Slicks Segmentation

Grégoire Mercier Stéphane Derrode  Wojciech Pieczynski 

GET/ENST Bretagne, dpt ITI (CNRS FRE 2658, TAMCIC, équipe TIME) Technopôle Brest-Iroîse, CS 83818, F-29238 Brest Cedex, France

EGIM, groupe GSM (CNRS UMR 6133, Institut Fresnel). Domaine Universitaire de Saint Jérôme, F-13013 Marseille Cedex 20, France

GET/INT, dpt CITI (CNRS UMR 5157) 9, rue Charles Fourier, F-91011 Evry Cedex, France

Corresponding Author Email: 
gregoire.mercier@enst-bretagne.fr
Page: 
329-346
|
Received: 
15 December 2003
|
Accepted: 
N/A
|
Published: 
31 August 2004
| Citation

OPEN ACCESS

Abstract: 

This study focuses on the segmentation and characterization of oil slicks from Synthetic Aperture Radar (SAR) data. Viscosity notably reduces the roughness of the sea surface which takes a major part in the backscattering. Hence, an oil slick is characterized by a low-backscattered energy and appears as a dark area in images. This is the reason why most of detection algorithms are based on histogram thresholding, but they appear not satisfactory as the number of false alarms is generally high.

Since oil slicks have specific impact on ocean wave spectra (from gravity-capillary waves to the swell), we propose to use a Markovian model adapted to a multiscale description of the original image. This unsupervised segmentation method allows to take into account the different states of the sea surface through its spectra. Thanks to the mixture estimation, it is possible to statistically characterize the detected areas and then to prevent from most of false alarms.

Results of segmentation are shown with two types of scenarios. The first one concerns oil spill in the Mediterranean sea detected by the ERS SAR sensor at a resolution of 25 m. The second scenario is related to the Prestige’s wreck acquired by the Envisat ASAR sensor in a wide swath mode at a resolution of 150 m.

Résumé

Nous nous intéressons à la détection et à la caractérisation des nappes d’hydrocarbure à partir d’images Radar à Synthèse d’Ouverture (RSO). La viscosité de l’hydrocarbure atténue sensiblement la rugosité de surface qui participe majoritairement à la rétro-diffusion. En conséquence, un film visqueux est caractérisé par un déficit d’énergie rétro-diffusée et apparaît comme une zone sombre dans les images. Cependant, la plupart des techniques de détection, basée sur un seuillage d’histogramme, s’avère insatisfaisante, puisqu’elle engendre un nombre élevé de fausses alarmes.

En considérant le fait qu’un film visqueux a un impact caractéristique sur la répartition de l’énergie des vagues selon les différentes longueurs d’onde (des vagues de gravité-capillarité jusqu’à la houle), nous avons développé une méthode de segmentation markovienne adaptée à une représentation multiéchelle de l’image originale. Cette méthode permet d’obtenir une classification qui tient compte des différents états du spectre de vagues. Grâce à l’estimation des lois intervenant dans le mélange, cette méthode de segmentation permet de caractériser statistiquement les zones détectées et ainsi de se prémunir contre de nombreuses fausses alarmes.

Cette stratégie a été appliquée avec succès à des images RSO de différentes résolutions (ERS-SAR en mode PRI à 25 m et ENVISAT-ASAR en mode Wide Swath à 150 m de résolution) correspondant à des situations particulières comme le naufrage d’un navire avec un hydrocarbure lourd en Atlantique et le dégazage de cuves avec un hydrocarbure plus fluide en Méditerranée.

Keywords: 

Hidden Markov Chain, Wavelet, Synthetic Aperture Radar, Oil Slick Detection, Multicomponent Segmentation

Mots clés

Chaînes de Markov Cachées, Ondelettes, Radar à Synthèse d’Ouverture, Détection de Nappe d’Hydrocarbure, Segmentation Multicomposante

1. Introduction: Détection Des Nappes D'hydrocarbure
2. Représentation Multiéchelle D’une Image
3. Segmentation Par Chaîne De Markov Cachée Multicomposante
4. Application À La Détection De Nappes D’hydrocarbure
5. Conclusion
Annexe
  References

[1] G. FRANCESCHETTI, A. IODICE, D. RICCIO, G. RUELLO, and R. SIVIERO, "SAR raw signal simulation of oil slicks in ocean environments", IEEE Trans. Geosci. Remote Sensing, vol. 40, n. 9, pp. 1935-1949, Sept. 2002.

[2] T. ELFOUHAILY and B. CHAPRON, "A comparison of wind wave spectra used in ocean remote sensing modeling", in Proc. of the IEEE IGARSS’96, vol. 1, Lincoln, NE (USA), 27-31 May 1996, pp. 606-608.

[3] W. ALPERS and H. HÜHNERFUSS, "Radar signatures of oil films floating on the sea surface and the Marangoni effect", J. Geophys. Res., vol. 93, no. C4, pp. 3642-3648, 1988.

[4] –––, "The damping of ocean waves by surface films: a new look at on old problem", J. Geophys. Res., vol. 94, no. C5, pp. 6251-626, 1989.

[5] J. W. WRIGHT, "A new model for sea clutter", IEEE trans. on Antennas and Propagation, vol. 16, pp. 217-223, 1968.

[6] J. INGLADA, "Étude des signatures radar de la topographie sous-marine à la surface de l’océan", Thèse de doctorat, Université de Rennes I, France, 27 septembre 2000.

[7] J.-M. LE CAILLEC and R. GARELLO, "Radarocéanographie", in Le traitement des images radar à synthèse d’ouverture, ser. Traité IC2, H. Maître, Ed. Hermès Science Publications, 2001, ch. 14.

[8] M. GADE, W. ALPERS, H. HÜHNERFUSS, V. WISMANN, and P. LANGE, "On the reduction of the radar backscatter by oceanic surface films: scattometer measurements and their theoretical interpretation", Remote Sensing of Environment, vol. 66, pp. 52-70, 1998.

[9] M. GADE, J. SCHOLZ, and C. VON VIEBAHN, "On the detectability of marine oil pollution in European marginal waters by means of ERS SAR imagery", in Proc. of the IEEE IGARSS’00, vol. 6, Honolulu, HI (USA), 24-28 July 2000, pp. 2510-2512.

[10] P. LOMBARDO, D. CONTE, and A. MORELLI, "Comparison of optimised processors for the detection and segmentation of oil slicks with polarimetric SAR images", in Proc. of the IEEE IGARSS’00, vol. 7, Honolulu, HI (USA), 24-28 July 2000, pp. 2963-2965.

[11] BJERDE A. SCHISTAD-SOLBERG, and G. STORVIK, "Oil spill detection in SAR imagery", in Proc. of the IEEE IGARSS’93, vol. 3, Tokyo, Japan, 18-21 August 1993, pp. 943-945.

[12] A. SCHISTAD-SOLBERG, G. STORVIK, R. SOLBERG, and E. VOLDEN, "Automatic detection of oil spills in ERS SAR images", IEEE Trans. Geosci. Remote Sensing, vol. 37, pp. 1916-1924, July 1999.

[13] H. ESPEDAL, "Detection of oil spill and natural film in the marine environment by spaceborne SAR ", in Proc. of the IEEE IGARSS’99, vol. 3, Hamburg, Germany, 28 June, 2 July 1999, pp. 1478-1480.

[14] I. DAUBECHIES, Ten lectures on wavelets. Philadelphia, Pennsylvania: Society for industrial and applied mathematics, 1992.

[15] S. MALLAT, A wavelet tour of signal processing. Academic Press, 1998.

[16] A. LOPÈS, R. GARELLO, and S. LE HÉGARAT-MASCLE, "Modèles de chatoiement", in Le traitement des images radar à synthèse d’ouverture, ser. Traité IC2, H. Maître, Ed. Hermès Science Publications, 2001, ch. 5.

[17] S. MALLAT, "A theory for multiresolution signal decomposition: the wavelet representation", IEEE Trans. Pattern Anal. Machine Intell., vol. 11, no. 17, pp. 674-693, July 1989.

[18] F. M. HENDERSON and A. J. LEWIS, Manual of Remote Sensing, Principles & Applications of Imaging Radar, 3rd ed. John Wiley & Sons, 1998.

[19] N. L. JOHNSON and S. KOTZ, Distribution in statistics: Continuous univariate distributions, Vol. 1 and 2. New York: John Wiley and Sons, 1994.

[20] Y. DELIGNON, A. MARZOUKI, and W. PIECZYNSKI, "Estimation of generalized mixture and its application in image segmentation", IEEE Trans. Image Processing, vol. 6, no. 10, pp. 1364-1375, 1997.

[21] S. DERRODE, G. MERCIER, J.-M. LE CAILLEC, and R. GARELLO, "Estimation of sea-ice SAR clutter statistics from Pearson’s system of distributions", in Proc. of the IEEE IGARSS’01, Sydney, Australia, 9-13 July 2001.

[22] M. DO and M. VETTERLI, "Wavelet-based texture retrieval using generalized Gaussian density and Kullback-Leibler distance", IEEE Trans. Image Processing, vol. 11, no. 2, pp. 146-158, Feb. 2002.

[23] G. MERCIER, S. DERRODE, and M. LENNON, "Hyperspectral image segmentation with Markov chain model", in Proc. of the IEEE IGARSS’03, Toulouse, France, 21-25 July 2003.

[24] S. DERRODE, G. MERCIER, and W. PIECZYNSKI, "Unsupervised change detection in SAR images using a multicomponent HMC model", in Proc. of the 2nd Int. Workshop on the Analysis of Multitemporal Remote Sensing Images (MultiTemp’03), Ispra, Italy, 16-18 July 2003.

[25] W. PIECZYNSKI, "Statistical image segmentation", Machine Graphics and Vision, vol. 1, no. 2, pp. 261-268, 1992.

[26] –––, "Modèles de Markov en traitement d’images", Traitement du Signal, vol. 20, no. 3, pp. 255-278, 2003.

[27] J.-M. BOUCHER and P. LENA, "Unsupervised bayesian classification, application to the forest of Paimpont (Brittany)", Photo Interpretation, vol. 32, no. 1994/4, 1995/1-2, pp. 79-81, 1995.

[28] J.-N. PROVOST, C. COLLET, P. ROSTAING, P. PÉREZ, and P. BOUTHEMY, "Hierarchical Markovian segmentation of multispectral images for the reconstruction of water depth maps", Computer Vision and Image Understanding, vol. 93, no. 2, pp. 155-174, 2004.

[29] R. FJØRTOFT, Y. DELIGNON, W. PIECZYNSKI, M. SIGELLE, and F. TUPIN, "Unsupervised segmentation of radar images using hidden Markov chains and hidden Markov random fields", IEEE Trans. Geosci. Remote Sensing, vol. 41, no. 3, pp. 675-686, 2003.

[30] M. MIGNOTTE, C. COLLET, P. PÉREZ, and P. BOUTHEMY, "Three-class Markovian segmentation of high-resolution sonar images", Computer Vision and Image Understanding, vol. 76, no. 3, pp. 191-204, 1999.

[31] S. REDD, Y. PETILLOT, and J. BELL, "An automatic approach to the detection and extraction of mine features in sidescan sonar", IEEE J. Oceanic Eng., vol. 28, no. 1, pp. 90-105, 2003.

[32] M. MIGNOTTE and J. MEUNIER, "Three-dimensional blind deconvolution of SPECT images", IEEE Trans. Biomed. Eng., vol. 47, no. 2, pp. 274-280, 2000.

[33] B. BENMILOUD and W. PIECZYNSKI, "Estimation des paramètres dans les chaînes de Markov cachées et segmentation d’images", Traitement du Signal, vol. 12, no. 5, pp. 433-454, 1995.

[34] W. SKARBECK, "Generalized Hilbert scan in image printing", in Theoretical Foundations of Computer Vision, R. Klette and W. G. Kropetsh, Eds. Akademik Verlag, Berlin, 1992.

[35] N. GIORDANA and W. PIECZYNSKI, "Estimation of generalized multisensor hidden Markov chains and unsupervised image segmentation", IEEE Trans. Pattern Anal. Machine Intell., vol. 19, no. 5, pp. 465-475, 1997.

[36] J.-F. CARDOSO, "Blind signal separation: statistical principles", Proc. IEEE, vol. 9, no. 10, pp. 2009-2025, Oct. 1998.

[37] C. JUTTEN and J. HÉRAULT, "Blind separation of sources, part I: an adaptive algorithm based on neuromimetic architecture", IEEE Trans. Signal Processing, vol. 24, pp. 1-10, 1991.

[38] P. COMMON, "Independant component analysis, a new concept?" IEEE Trans. Signal Processing, vol. 36, pp. 287-314, 1994.

[39] W. PIECZYNSKI, J. BOUVRAIS, and C. MICHEL, "Estimation of generalized mixture in the case of correlated sensors", IEEE Trans. Image Processing, vol. 9, no. 2, pp. 308-311, Feb. 2000.

[40] J.-N. PROVOST, "Classification bathymétrique en imagerie multispectrale SPOT", Thèse de 3e cycle, Université de Bretagne Occidental, 2001.

[41] J.-L. STARCK, F. MURTAGH, and A. BIJAOUI, Image processing and image analysis, the multiscale approach. Cambridge University Press, 1998.

[42] P. A. DEVIJVER, "Baum’s Forward-Backward algorithm revisited", Pattern Recognition Letters, vol. 3, pp. 369-373, 1985.