ACCESS
Acrylic cement is used to fix replacement hip implants in the bone. Problems of loosening occur often as a result of fatigue damage or debonding between cement and implant due to the presence of cavity or voids. High stress concentrations can occur in the cement which is often the cause of the initiation and the propagation of cracks leading irremediably to loosening. In this work, we carried out a 3D finite element analysis of equivalent distribution of stresses in damaged orthopedic cement. The damage is due to the presence of cavity of different diameters under three cases of maximal dynamic loads (walking, climbing up stairs and climbing down stairs). The cavity presence with a diameter greater than or equal to 0.3 mm in the cement at the cement-implant interface generates high stresses near the cavity for the three dynamic activities. High interface stresses create micro-rupture zones around the cavity at the proximal cement region. The probability of debonding is evaluated by a fracture index calculated at the cement-metal interface using the Hoffman criterion. The results show that debonding occur near the cavity. Micro-debonding zones appear around the cavity. Then, the debonded sites expand along the interface towards the distal part of the cement until interface gets loose.
finite element, bone cement, interface, cavity, failure, debonding
Moulgada A., Bouziane M. M., Bachir Bouiadjra B. (2014). Finite element simulation of stress distribution in the different components of Ceraver-Osteal hip prosthesis: Static and dynamic analysis. Mechanika, Vol. 20, No. 5, pp. 452-459. http://dx.doi.org/10.5755/j01.mech.20.5.5372
Lennon A. B., McCormack B. A. O., Prendergast P. J. (2003). The relationship between cement fatigue damage and implant surface finish in proximal femoral prostheses. Medical Engineering & Physics, Vol. 25, pp. 833–841. http://dx.doi.org/10.1016/S1350-4533(03)00120-6
Bachtar F., Chen X., Hisada T. (2006). Finite element contact. Biological Engineering & Computing, Vol. 44, pp 643-651. https://doi.org/10.1007/s11517-006-0074-9
Bergmann G. (2001). HIP98, loading of the hip joint. Free University, Berlin: ISBN 3-9807848-0-0.
Bergmann G., Deuretzbacher M., Heller F., Graichen A., Rohlmann Strauss J., Duda G. N. (2001). Hip contact forces and gait patterns from routine. Journal of Biomechanics, Vol. 34, pp. 859-871. https://doi.org/10.1016/S0021-9290(01)00040-9
Bergmann G., Graichen F., Rohlmann A., Bender A., Heinlein B., Duda G. N., Heller M. O., Morlock M. M. (2010). Realistic loads for testing hip implants. Biomed Mater Eng., Vol. 20, No. 2, pp. 65-75. http://dx.doi.org/10.3233/BME-2010-0616
Cardinale T., Arleo G., Bernardo F., Feo A., Fazio P. D. (2017). Investigations on thermal and mechanical properties of cement mortar with reed and straw fibers. International Journal of Heat and Technology, Vol. 35, No. S1, pp. S375-S382. http://dx.doi.org/10.18280/ijht.35Sp0151
Cetin E., Cetkin E. (2017). The effect of cavities and T-shaped assembly of fins on overall thermal resistances. International Journal of Heat and Technology, Vol. 35, No. 4, pp. 944-952. http://dx.doi.org/10.18280/ijht.350430
Harris W. H. (1992). Is it advantageous to strengthen the cement-metal interface and use a collar for cemented femoral components of total hip replacement? ClinOrthop, Vol. 285, pp. 67-72. http://dx.doi.org/10.1097/00003086-199212000-00011
Hoffman O. (1967). The brittle strength of orthotropic materials. J Comp Mat, Vol. 1, pp. 200-206. http://dx.doi.org/10.1177/002199836700100210
Huiskes R., Chao E. Y. S. (1983). A survey of finite element analysis in orthopaedic biomechanics: The first decade. J Biomech, Vol. 16, pp. 385-409. http://dx.doi.org/10.1016/0021-9290(83)90072-6
Jasty M., Maloney W. J., Bragdon C. R. (1991). The initiation of failure in cemented femoral components of hip arthroplasties. J Bone Joint Surg [Br], Vol. 73, No. B, pp. 551-8. https://doi.org/10.1302/0301-620X.73B4.2071634
Gopp K. E. (2005). Acrylic bone cement: mechanical and physical properties. Orthop Clin N Am, pp. 29-39. http://dx.doi.org/10.1016/j.ocl.2004.06.011
Kühn K. D. (2000). Bone cements: Up-to-date comparison of physical and chemical properties of commercial materials. 1 edition. Berlin; New York: Springer, Vol. 272. https://doi.org/10.1007/978-3-642-59762-6
Zouambi L., Serier B., Fekirini H., Bachir Bouiadjra B. (2013). Effect of the cavity-cavity interaction on the stress amplitude in orthopedic cement. Journal of Biomaterials and Nanobiotechnology, Vol. 4, No. 1, pp. 30-36. http://dx.doi.org/10.4236/jbnb.2013.41005
Zhang L. F., Ge S. R., Liu H. T., Wang Q. L., Wang L. P., Xian C. J. (2015). Contact damage failure analyses of fretting wear behavior of the metal stem titanium alloy–bone cement interface. Journal of the Mechanical Behavior of Biomedical Materials, Vol. 51, pp. 132-146. https://doi.org/10.1016/j.jmbbm.2015.06.025
Bouziane M., Bachir Bouiadjra B., Benbarek S., Tabeti M. S. H., Achour T. (2010). Finite element analysis of the behaviour of microvoids in the cement mantle of cemented hip stem: Static and dynamic analysis. Materials and Design, Vol. 31, No. 1, pp. 545-550. http://dx.doi.org/10.1016/j.matdes.2009.07.016
Nuño N., Avanzolini G. (2002). Residual stresses at the stem–cement interface of an idealized cemented hip stem. Journal of Biomechanics, Vol. 35, pp. 849-852. http://dx.doi.org/10.1016/S0021-9290(02)00026-X
Prendergast P. J. (1997). Finite element models in tissue mechanics and orthopaedic implant design. Clinical Biomechanics, Vol. 12, No. 6, pp. 343-366. https://doi.org/10.1016/S0268-0033(97)00018-1
Race A., Miller M. A., Clarke M. T., Mann K. A. (2005). Cement-implant interface gaps explain the poor results of CMW3 for femoral stem fixation: a cadaver study of migration, fatigue and mantle morphology. Acta Orthop, Vol. 76, pp. 679-87. http://dx.doi.org/10.1080/17453670510041763
Verdonschot N., Huiskes R. (1997). Cement debonding process of total hip arthroplasty stems. Clinical Orthopaedics and Related Research, Vol. 336, pp. 297-307. http://dx.doi.org/10.1097/00003086-199703000-00038