Analysis on microscopic damage of porous materials under cyclic loads

Analysis on microscopic damage of porous materials under cyclic loads

Lili Jin*

College of Civil Engineering and Architecture, Guangxi University, Nanning 530004, China

Guangxi Polytechnic of Construction, Nanning 530007, China

Corresponding Author Email: 
litiemei666@163.com
Page: 
357-381
|
DOI: 
https://doi.org/10.3166/ RCMA.28.357-381
| |
Published: 
30 September 2018
| Citation

ACCESS

Abstract: 

This paper modifies the Gurson-Tvergaard-Needleman (GTN) model, originally limited to depicting the microvoids evolution under monotonic loading, into a constitutive model capable of reflecting the effect of alternating loads, and compiles a VUMAT user subroutine in the Abaqus/Explicit to calculate the microvoids evolution and mechanical behavior of materials under specified stress triaxiality. Before the calculation, the parameters of the modified GTN model were calibrated by the finite-element cell model. The results show that the modified GTN model can rationally describe the mechanical behavior of materials with microvoid evolution under uniaxial and multiaxial cyclic load, and that the void evolution law under cyclic load is closely related to the stress state. The research findings shed new light on damage theories.

Keywords: 

modified gurson-tvergaard-needleman (GTN) model, stress triaxiality, cell model, void evolution, cyclic load, ratcheting effect

1. Introduction
2. GTN model considering back stress
3. Cell model of the porous material
4. Results analysis
5. Conclusions
Acknowledgements
  References

Becker R., Needleman A. (1986). Effect of yield surface curvature on necking and failure in porous plastic solids. Journal of Applied Mechanics ASME, Vol. 53, No. 3, pp. 491-499. https://doi.org/10.1115/1.3171801

Brocks W., Steglich D. (2003). Damage models for cyclic plasticity. Key Engineering Materials, Vol. 251-252, pp. 389-398. https://doi.org/10.4028/www.scientific.net/kem.251-252.389

Chaboche J. L. (1989). Constitutive equations for cyclic palsticity and cyclic viscoplasticity. International Journal of Plasticity, Vol. 5, No. 3, pp. 247-302. https://doi.org/10.1016/0749-6419(89)90015-6

Chen Y., Zhang C., Varé C. (2017). An extended GTN model for indentation-induced damage. Computational Materials Science, Vol. 128, pp. 229-235. https://doi.org/10.1016/j.commatsci.2016.11.043

Gurson A. L. (1977). Continuum theory of ductile rupture by void nucleation and growth: Part 1-Yield criteria and flow rules for porous ductilr media. Journal of Engineering Materials & Technology, Vol. 99, No. 1, pp. 297-300. https://doi.org/10.1115/1.3443401

Mear M. E., Hutchinson J. W. (1985). Influence of yield surface curvature on flow localization in dilatant plasticity. Mechanics of Materials, Vol. 4, No. 3-4, pp. 395-407. https://doi.org/10.1016/0167-6636(85)90035-3

Nahshon K., Hutchinson J. W. (2008). Modification of the Gurson model for shear failure. European Journal of Mechanics, Vol. 27, No. 1, pp. 1-17. https://doi.org/10.1016/j.euromechsol.2007.08.002

Oh Y. R., Nam H. S., Kim Y. J., Miura N. (2017) A application of the GTN model to ductile crack growth simulation in through-wall cracked pipes. International Journal of Pressure Vessels & Piping. https://doi.org/10.1016/j.ijpvp.2017.11.006

Parsa M. H., Ettehad M., Matin P. H. (2013). Forming limit diagram determination of Al 3105 sheets and Al 3105/polypropylene/Al 3105 sandwich sheets using numerical calculations and experimental investigations. Journal of Engineering Materials & Technology, Vol. 135, No. 3, pp. 031003. https://doi.org/10.1115/1.4023848

Tvergaard V., Needleman A. (1984). Analysis of the cup-cone fracture in a round tensile bar. Acta Metallurgica, Vol. 32, No. 1, pp. 157-169. https://doi.org/10.1016/0001-6160(84)90213-x

Tvergaard V. (1981). Influence of voids on shear band instabilities under plane strain conditions. International Journal of Fracture, Vol. 17, No. 4, pp. 389-407. https://doi.org/10.1007/bf00036191

Tvergaard V. (1982). On localization in ductile materials containing spherical voids. International Journal of Fracture, Vol. 18, No. 4, pp. 237-252. https://doi.org/10.1007/BF00015686

Vadillo G., Fernándezsáez J. (2009). An analysis of Gurson model with parameters dependent on triaxiality based on unitary cells. European Journal of Mechanics - A/Solids, Vol. 28, No. 3, pp. 417-427. https://doi.org/10.1016/j.euromechsol.2008.10.005

Zhang K. S., Bai J. B., François D. (1999). Ductile fracture of materials with high void volume fraction. International Journal of Solids & Structures, Vol. 36, No. 23, pp. 3407-3425. https://doi.org/10.1016/s0020-7683(98)00157-7

Zhang K. S., Bai J. B., François D. (2001). Numerical analysis of the influence of the Lode parameter on void growth. International Journal of Solids & Structures, Vol. 38, No. 32, pp. 5847-5856. https://doi.org/10.1016/s0020-7683(00)00391-7