Optimal Performance Evaluation of Energy Efficient Residential Air Conditioning System with Nanofluid-based Intercooler using Taguchi-based Response Surface Methodology

Optimal Performance Evaluation of Energy Efficient Residential Air Conditioning System with Nanofluid-based Intercooler using Taguchi-based Response Surface Methodology

Balaji Navaneethakrishnan* N. Nithyanandan R. Adalarasan M. Santhanakumar P. Suresh Mohan Kumar

Department of Mechanical Engineering, Saveetha Engineering College, Chennai-602015, Tamil Nadu, India

Department of Mechanical Engineering, Panimalar Institute of technology, Chennai-600123, Tamil Nadu, India

Department of Mechanical Engineering, DMI college of engineering, Chennai 600 122, Tamil Nadu, India

Corresponding Author Email: 
drbalaji1977@rediffmail.com
Page: 
141-150
|
DOI: 
https://doi.org/10.14447/jnmes.v21i3.455
Received: 
August 25, 2017
| |
Accepted: 
March 09, 2018
| | Citation
Abstract: 

Air conditioning is viewed as a major energy consuming area in domestic and industrial applications. However energy conservation is effectively possible in air conditioners by employing an intercooler with nanofluids, which can consequently reduce the compressor load. This paper presents an investigative report on the performance of proposed energy efficient air conditioning system. A binary mixture of ethylene glycol (C2H6O2) and water is used as the base fluid in the shell and coil type heat exchanger (SCHE). The volume concentration of C2H6O2 in base fluid, type of suspended nano particles (Al2O3 and MgO), flow rate of nanofluid at shell side of intercooler and the volume fraction of nano particles are chosen for experimentation designed using Taguchi L18 orthogonal array. The coefficient of performance (COP) of the nanofluid-based domestic air conditioner is estimated as the performance index (response). Quadratic model and response surface plots are generated to observe the effects of inputs on the COP. The nano particles of MgO (0.75%v/v), suspended in a binary mixture with 28.65% C2H6O2 is found to improve the system performance (COP) at a nanofluid flow rate of 2.42 LPM.

Keywords: 

Optimal performance,Nanofluid, Intercooler, Air conditioner, Coefficient of performance, Energy conservation

1. Introduction
2. Experimentation
3. Procedure for Selecting the Optimal Nanofluid Parameters Using Rsm
4. Results and Discussion
5. Conclusions and Future Scope
  References

[1] Adalarasan, R., and Shanmugasundaram,A., Journal of the Brazilian Society of Mechanical Sciences and Engineering, 37, 1515 (2015). DOI:10.1007/s40430-014-0294-0.

[2] Adalarasan, R., Santhanakumar, M., Rajmohan. M., The Interna-tional Journal of Advanced Manufacturing Technology, 78, 1161 (2015). DOI:10.1007/s00170-014-6744-0.

[3] Adalarasan, R., Santhanakumar, M., Rajmohan. M., Measure-ment, 73, 596 (2015). DOI:10.1016/j.measurement.2015.06.003.

[4] Ahamed, J. U., Saidur, R., Masjuki,H. H., Arabian Journal for Science and Engineering, 39, 4141 (2014). DOI:10.1007/s13369-014-0961-6.

[5] Akhavan-Behabadi, M. A., Sadoughi, M. K.,Darzi, M., Fakoor-Pakdaman, M., Experimental Thermal and Fluid Science, 66, 46 (2015). DOI:10.1016/j.expthermflusci.2015.02.027.

[6] Balaji, N., and P. Suresh mohankumar., Applied Mechanics and Materials, 404, 432 (2013). doi:10.4028/www.scientific.net/AM M.404.432.

[7] Balaji, N., Suresh Mohan Kumar, P.,Velraj, R., Kulasekharan, N., Arabian Journal for Science and Engineering, 40, 1681 (2015). DOI:10.1007/s13369-015-1644-7.

[8] Chen, H., Lee, W. L.,Yik,F.W.H., Energy Conversion and Man-agement, 49, 1416 (2008). DOI:10.1016/j.enconman. 2007.12.024.

[9] Esfe, M.H., Saedodin, S., Mahmoodi, M., Experimental Thermal and Fluid Science, 52, 68 (2014). DOI:10.1016/j.expthermflusc-i.2013.08.023.

[10] Gupta, M., Kumar, R., Arora. N., Journal of the Brazilian Society of Mechanical Sciences and Engineering, 37, 1347 (2015). DOI:10.1007/s40430-014-0262-8.

[11] Hajidavalloo, E., Applied Thermal Engineering, 27, 1937 (2007). DOI:10.1016/j.applthermalen-g.2006.12.014.

[12] Hajidavalloo, E., Eghtedari.,H., International Journal of Refriger-ation, 33, 982 (2010). DOI:10.1016/j.ijrefrig.2010.02.001.

[13] Hassan, Z.H., Hanash, Z.H., Al-Khwarizmi Engineering Journal, 8, 62 (2012).

[14] Hu, S., Huang, B. J., Applied Thermal Engineering, 25, 1599 (2015). DOI:10.1016/j.applthermalen-g.2004.11.011.

[15] Jassim, L.I., Al-Ma'mon College Journal, 17, 230 (2011).

[16] Loaiza, J. C. V., Pruzaesky, F. C., Parise, J. A. R., International Refrigeration and Air Conditioning Conference, 1145 (2010).

[17] Malvandi, A., Ganji, D.D., Journal of the Brazilian Society of Mechanical Sciences and Engineering, 37, 141 (2015). DOI:10.1007/s40430-014-0139-x.

[18] Mishra, P. C., Mukherjee, S., Nayak, S. K., Panda, A., Interna-tional Nano Letters, 4, 109 (2014). DOI:10.1007/s40089-014-0126-3.

[19] Murthy, V. V., Padmanabhan, V., Senthilkumar, P., Journal of Mechanical Science and Technology, 27, 917 (2013). DOI:10.1007/s12206-013-0103-1.

[20] Nasif, M. S., Al-Waked, R., Behnia, M., Morrison, G., Journal of Mechanical Science and Technology, 27, 3541 (2013). DOI: 10.1007/s12206-013-0872-6.

[21] Peyghambarzadeh, S.M., Hashemabadi, S.H., Hoseini, S.M., SeifiJamnani, M., International Communications in Heat and Mass Transfer, 38, 1283 (2011). DOI:10.1016/j.icheatmasstransfer.2011.07.001.

[22] Rafati, M., Hamidi, A. A., ShariatiNiaser, M., Applied Thermal Engineering, 45-46, 9 (2012). DOI:10.1016/j.applthermaleng.2012.03.028.

[23] Raveshi, M. R., Keshavarz, A., Mojarrad, M. S., Amiri. S., Ex-perimental Thermal and Fluid Science, 44, 805 (2013). DOI:10.1016/j.expthermflusci.2012.09.025.

[24] Ruan, B., Jacobi, A. M., Nanoscale Research Letters, 7, 1 (2012). DOI:10.1186/1556-276X-7-127.

[25] Santhanakumar, M., Adalarasan, R., Siddharth, S., Velayudham, A., Journal of the Brazilian Society of Mechanical Sciences and Engineering, 39, 2071 (2016). DOI:10.1007/s40430-016-0572-0.

[26] Scherrer, P., Mathematisch-Physikalische Klasse, 1918, 98 (1918). DOI: http://eudml.org/doc/59018.

[27] Soltanipour, H., Khalilarya, S., YekaniMotlagh, S., Journal of the Brazilian Society of Mechanical Sciences and Engineering, 39, 345 (2017). DOI:10.1007/s40430-016-0541-7.

[28] Thu, M., Sato, H., International Journal of Refrigeration, 36, 1589 (2013). DOI:10.1016/j.ijrefrig.2013.04.004.

[29] Wang, T., Sheng, C., Nnanna, A. G. A., Energy and Buildings, 81, 435 (2014). DOI:10.1016/j.enbuild.2014.06.047.

[30] Xie, H., Yu, W. Chen, W., Journal of Experimental Nanosci-ence, 5, 463 (2010). DOI:10.1080/17458081003628949.