Event triggering strategies for consensus in clustered networks

Event triggering strategies for consensus in clustered networks

Jihene Ben Rejeb
Irinel-Constantin Mor˘arescu
Jamal Daafouz

Université de Lorraine, CRAN, UMR 70392 Avenue de la forêt de Haye. 54516 Vandoeuvre-lès-Nancy , France

Corresponding Author Email: 
jihene.ben-rejeb,constantin.morarescu,jamal.daafouz@univ-lorraine.fr
Page: 
93-113
|
DOI: 
https://doi.org/10.3166/JESA.49.93-113
Received: 
11/09/2015
|
Accepted: 
3/02/2016
|
Published: 
29 February 2016
| Citation
Abstract: 

This paper focuses on consensus in networks partitioned in several clusters. It uses the multi-agent framework in which the network is seen as a sum of interconnected subsystems called agents. We assume that each agent updates its state continuously by taking into account the states of some other agents belonging to the same cluster. This protocol allows reaching only local agreements in the network. In order to get consensus we endow an agent per cluster with the capacity to discretely interact outside its own cluster. The discrete interaction of one agent with agents from other clusters is modeled as a state jump or reset. The goal of the paper is to design event triggering reset strategies that guarantee the consensus is achieved. Some simulations are presented comparing the proposed approaches with classical reset strategies.

Keywords: 

multi-agent systems, consensus, interconnected systems, reset strategies.

1. Introduction
2. Formulation du problème
3. Prérequis
4. Conception des lois de réinitialisation événementielles
5. Apports de la stratégie événementielle d’un point de vue optimisation énergétique
6. Conclusion
  References

Andreoli J.-M. (1995). Coordination as negotiated transactions. Object Orientation with Parallelism and Persistence, p. 151-173.

BenRejeb J., Mor˘arescu I.-C., Daafouz J. (2014). Event triggering strategies for consensus in clustered networks. In Proc. of the european control conference.

Blondel V. D., Hendrickx J. M., , Tsitsiklis J. (2009). On Krause’s multi-agent consensus model with state-dependent connectivity. IEEE Trans. on Automatic Control, vol. 54, no 11, p. 2586-2597.

Blondel V. D., Hendrickx J. M., Olshevsky A., Tsitsiklis J. (2005). Convergence in multiagent coordination, consensus, and flocking. In Proc. ieee conf. on decision and control, p. 2996-3000.

Bragagnolo M. C., Mor˘arescu I.-C., Daafouz J., Riedinger P. (2014). Lmi sufficient conditions for the consensus of linear agents with nearly-periodic resets. In Proc. of the american control conference.

Bullo F., Cortés J., Martinez S. (2009). Distributed control of robotic networks. a mathematical approach to motion coordination algorithms. Princeton University Press.

Gfeller D., Rios P. D. L. (2008). Spectral coarse graining and synchronization in oscillator networks. Phys. Rev. Lett., vol. 100, p. 174104.

Hegselmann R., Krause U. (2002). Opinion dynamics and bounded confidence models, analysis, and simulation. Journal of Artificial Societies and Social Simulation, vol. 5, no 3.

Jadbabaie A., Lin J., Morse A. S. (2003). Coordination of groups of mobile autonomous agents using nearest neighbor rules. IEEE Trans. on Automatic Control, vol. 48, no 6, p. 988-1001.

Moreau L. (2005). Stability of multiagent systems with time-dependent communication links. IEEE Trans. on Automatic Control, vol. 50, no 2, p. 169-182.

Mor˘arescu I.-C., Girard A. (2011). Opinion dynamics with decaying confidence: Application to community detection in graphs. IEEE Trans. on Automatic Control, vol. 56, no 8, p. 1862 - 1873.

Mor˘arescu I.-C., Martin S., Girard A. (2014). Coordination in networks of linear impulsive agents. In Proceedings of the 53rd conference on decision and control.

Mor˘arescu I.-C., MichielsW., Jungers M. (2013). Synchronization of coupled nonlinearoscillators with shifted gamma-distributed delays. In Proceedings of american control conference.

Pavlopoulos G., Secrier M., Moschopoulos C., Soldatos T., Kossida S., Aerts J. et al. (2011). Using graph theory to analyze biological networks. BioData Mining, vol. 4, no 10, p. 1-27.

Ratmann O., Wiuf C., Pinney J. W. (2009). From evidence to inference: Probing the evolution of protein interaction networks. HFSP Journal, vol. 3, no 5, p. 290-306.

Ren W., Beard R. W. (2005). Consensus seeking in multiagent systems under dynamically changing interaction topologies. IEEE Trans. on Automatic Control, vol. 50, no 5, p. 655-661.

Steur E., Tyukin I., Nijmeijer H. (2009). Semi-passivity and synchronizationof diffusively coupled neuronal oscillators. Physica D, no 238, p. 2119-2128.

Tanner H., Jadbabaie A., Pappas G. (2003). Stable flocking of mobile agents part i: Dynamic topology. In Proceedings of the 42th ieee conference on decision and control, vol. 2, p. 2010-2015.

Tanner H., Jadbabaie A., Pappas G. (2005). Flocking in teams of nonholonomic agents. In V. Kumar, N. Leonard, A. Morse (Eds.), Cooperative control, vol. 309, p. 458–460. Springer.

Touri B., Nedic A. (2012). On approximations and ergodicity classes in random chains. IEEE Transactions on Automatic Control, vol. 57, no 11, p. 2718-2730.