Integrating sustainable performance into supply chain design and planning models: A literature review

Integrating sustainable performance into supply chain design and planning models: A literature review

Tasseda Boukherroub Angel Ruiz Julien Fondrevelle Alain Guinet Mustapha Ouhimmou 

Centre Interuniversitaire de Recherche sur les Réseaux d’Entreprise la Logistique et le Transport (CIRRELT) 2325, rue de la Terrasse, Université Laval, Québec (Québec) G1V 0A6, Canada

Faculté des sciences de l’administration, Pavillon Palasis-Prince 2325, rue de la Terrasse, Université Laval, Québec (Québec) G1V 0A6, Canada

Laboratoire DISP (Décision et Information pour les Systèmes de Production) INSA-Lyon, campus Lyon Tech La Dou, Bât. Léonard de Vinci, 21 avenue Jean Capelle, 69621 Villeurbanne cedex, France

Département de la production automatisée École de Technologie Supérieure (ÉTS), Montréal (Québec) H3C 1K3, Canada

Corresponding Author Email: 
Tasseda.Boukherroub@cirrelt.ca, Angel.Ruiz@osd.ulaval.ca, Julien.fondrevelle@insa-lyon.fr, alain.guinet@insa-lyon.fr, Mustapha.Ouhimmou@etsmtl.ca
Page: 
237-270
|
DOI: 
https://doi.org/10.3166/JESA.49.237-270
Received: 
N/A
| |
Accepted: 
N/A
| | Citation
Abstract: 

This paper presents a systematic literature review on sustainable supply chain design and planning models in the field of Operations Research (OR). The goal is to analyse to which extent economic, environmental and social aspects are integrated into mathematical models. The focus is drawn on sustainahility performance criteria considered, and the way they are formulated in the mathematical models. We also emphasize on industrial and legislative contexts where the sustainable supply chain mxlels are pmpcsed. Fllwing the literature analysis, the main conclusions and research perspectives are presented. 

Keywords: 

supply chain design and planning, sustainable development, sustainable performance, optimization models.

1. Introduction
2. La gestion des chaînes logistiques durables
3. Démarche
4. Classification et analyse
5. Conclusions et perspectives
Remerciements

Nous exprimons notre gratitude à la région Rhône-Alpes qui a soutenu financièrement notre action à travers une allocation de recherche. Nous remercions également les deux relecteurs anonymes pour leurs commentaires constructifs.

  References

Abdallah T., Farhat A., Diabat A. & Kennedyt S. (2012). Green supply chains with carbon trading and environmental sourcing: Formulation and life cycle assessment. Applied Mathematical Modelling. 36, p. 4271-4285.

Achillas C., Aidonis D., Vlachokostas Ch., Moussiopoulos N., Banias G. & Triantafillou D. (2012). A multi-objective decision-making model to select waste electrical and electronic equipment transportation media. Resources, Conservation and Recycling. 66, p. 76-84.

Akgul O., Shah N. & Papageorgiou L.G. (2012). An optimisation framework for a hybrid first/second generation bioethanol supply chain. Computers and Chemical Engineering. 42, p. 101-114.

Altmann M. & Bogaschewsky R. (2014). An environmentally conscious robust closed-loop supply chain design. Journal of Business Economics. 84, p. 613-637.

Amin S.H. & Zhang G. (2012a). A multi-objective facility location model for closed-loop supply chain network under uncertain demand and return. Applied Mathematical Modelling. 37(6), p. 4165-4176.

Amin S.H. & Zhang G. (2012b). An integrated model for closed-loop supply chain configuration and supplier selection: Multi-objective approach. Expert Systems with Applications. 39, p. 6782-6791.

Aramyan L.H., Hoste R., van den Broek W., Groot J., Soethoudt H., Lan T., Nguyen T., Hermansen J.E. & van der Vorst J.G.A.J (2011). Towards sustainable food production: a scenario study of the European pork sector. Journal on Chain and Network Science. 11(2), p. 177-189.

Baud-Lavigne B., Agard B., Penz B. (2014). Environmental constraints in joint product and supply chain design optimization. Computers and Industrial Engineering. 76(0), p. 16-22.

Baumann E. (2011). Modèles d’évaluation des performances économique, environnementale et sociale dans les chaînes logistiques. Thèse de doctorat. Institut National des Sciences Appliquées de Lyon, France.

Bennekrouf M., Benyoucef L. & Sari Z. (2010). Problèmes de conception et pilotage des chaînes logistiques inverses et globales : Etat de l’art. 8th International Conference of Modeling and Simulation (MOSIM’10). 10-12 Mai, Hammamet, Tunisia.

Bing X., Groot J.J., Bloemhof-Ruwaard J.M. & van der Vorst J. (2013). Multimodal network design for sustainable household plastic recycling.. International Journal of Physical Distribution & Logistics Management. 43(5/6), p. 452-477. Journal of Cleaner Production. Article in press: http://dx.doi.org/10.1016/j.jclepro.2015.02.019.

Bing X., Bloemhof-Ruwaard J., Chaabane A., van der Vorst J. (2015). Global reverse supply chain redesign for household plastic waste under the emission trading scheme. Journal of Cleaner Production, 103, p. 28-39.

Bojarski A.D., Laínez J.M., Espuna A., Puigjaner L. (2009). Incorporating environmental impacts and regulations in a holistic supply chains modeling: An LCA approach. Computers and Chemical Engineering. 33, p. 1747-1759.

Bostel N., Dejax P. & Sawadogo M. (2012). A modeling framework for procurement of a retail distribution system with economic and environmental goals. 9th International Conference on Modeling Optimization and Simulation. June 6-8, Bordeaux, France.

Botta-Genoulaz V., Campagne J.P., Llerena D. & Pellegrin C. (2010). Supply Chain Performance : Collaboration, Alignment and Coordination. John Wiley & Sons, New Jersey.

Boukherroub T., Ruiz A., Guinet A. & Fondrevelle J. (2013). An Integrated Approach for the Optimization of the Sustainable Performance: a Wood Supply Chain. IFAC Conference on Manufacturing Modelling, Management, and Control (MIM’2013). June 19-21, Saint-Petersburg Russia.

Boukherroub T., Ruiz A., Guinet A., Fondrevelle J. (2015). An integrated approach for sustainable supply chain planning. Computers & Operations Research. 54, p. 180-194.

Brown M.T., Ulgiat S. (1997). Emergy-based indices and ratios to evaluate sustainability: monitoring economies and technology toward environmentally sound innovation. Journal of Ecological Engineering. 9(1–2), p. 51-69.

Chaabane A., Ramudhin A., Kharoune M. & Paquet M. (2011a). Trade-off model for carbon market sensitive sustainable supply chain network design. International Journal of Operational Research. 10, p. 416-441.

Chaabane A., Ramudhin A. & Paquet M. (2011b). Designing supply chains with sustainability considerations. Production Planning and Control Journal. 22, p. 727-741.

Chaabane A., Ramudhin A. & Paquet M. (2012). Design of sustainable supply chains under the emission trading scheme. International Journal of Production Economics. 135. p. 37-49.

Choudhary A., Sarkar S., Settur S., Tiwari M.K. (2015). A carbon market sensitive optimization model for integrated forward–reverse logistics. International Journal of Production Economics. 164, p. 433-444.

Chung S.H., Weaver R.D. & Friesz T.L. (2013). Strategic response to pollution taxes in supply chain networks: Dynamic, spatial, and organizational dimensions. European Journal of Operational Research. 231, p. 314-327.

CMED (1987). Notre avenir à tous. Oxford, United Kingdom, Oxford University Press. Commission européenne (2001). Promouvoir un cadre européen pour la responsabilité sociale des entreprises-Livre vert, Luxembourg : Communautés européennes.

Corsano G., Vecchietti A.R. & Montagna J.M. (2011). Optimal design for sustainable bioethanol supply chain considering detailed plant performance model. Computers and Chemical Engineering. 35, p. 1384-1398.

Coskun S., Ozgur L., Polat O., Gungor A. (2016). A model proposal for green supply chain network design based on consumer segmentation. Journal of Cleaner Production, 110, p. 149-157.

Das K., Posinasetti N.R. (2015). Addressing environmental concerns in closed loop supply chain design and planning. International Journal of Production Economics.163, p. 34-47

Devika K., Jafarian A., Nourbakhsh V. (2014). Designing a sustainable closed-loop supply chain network based on triple bottom line approach: a comparison of metaheuristics hybridization techniques. European Journal of Operational Research. 235(3), p. 594-615. Journal of Cleaner Production. Article in press: http://dx.doi.org/10.1016/j.jclepro.2015.02.063.

Dotoli M., Fanti M.P., Meloni C. & Zhou M.C. (2005). A Multi-level approach for network design of integrated supply chains. International Journal of Production Economics. 43(20). p. 4267-4287.

Dotoli M., Fanti M.P., Meloni C. & Zhou M.C. (2006). Design and optimization of integrated e-supply chain for agile and environmentally conscious manufacturing. IEEE Transactions on Systems, Man and Cybernetics, Part A: Systems and Humans. 36(1). p. 62-75.

Elhedhli S. & Merrick R. (2012). Green supply chain network design to reduce carbon emissions. Transportation Research Part D. 17, p. 370-379.

Elkington J. (1998). Cannibals with Forks: the Triple Bottom Line of 21st Century Business, News Society Publishers.

Eskandarpour M., Zegordi S.H., & Nikbakhsh E. (2013). A parallel variable neighborhood search for the multi-objective sustainable post-sales network design problem. International Journal of Production Economics.

Fahimnia B., Sarkis J., Eshragh A. (2015a). Tactical supply chain planning under a carbon tax policy scheme: A case study. International Journal Production Economics. 164, p. 206-215.

Fahimnia B., Sarkis J., Eshragh A. (2015b). A tradeoff model for green supply chain planning: A leanness-versus-greenness analysis. Omega. 54, 173-190.

Ferretti I., Zanoni S., Zavanella L. & Diana A. (2007). Greening the aluminium supply chain. International Journal of Production Economics. 108, p. 236-245.

Fonseca M.C., García-Sánchez A., Ortega-Mier M. & Saldanha-da-Gama F. (2010). A stochastic bi-objective location model for strategic reverse logistics. Top. 18, p. 158-184.

Garg K., Devika K., Diabat A., Jha P.C. (2015). A multi-criteria optimization approach to manage environmental issues in closed loop supply chain network design. Journal of Cleaner Production. Article in press: http://dx.doi.org/10.1016/j.jclepro.2015.02.075.

Giannikos I. (1998). A multiobjective programming model for locating treatment sites and routing hazardous wastes. European Journal of Operation Research, 104, p. 330-342.

Giarola S., Shah S. & Bezzo F. (2012). A comprehensive approach to the design of ethanol supply chains including carbon trading effects. Bioresource Technology, 107, p. 175-185.

Standard & Poor’s (2008). Global Industry Classification Standard. Disponible sur le site web http://www.spindices.com/documents/index-policies/methodology-gics.pdf.

Govindan K., Jafarian A., Khodaverdi R. & Devika K. (2013).Two-echelon multiple-vehicle location-routing problem with time windows for optimization of sustainable supply chain network of perishable food. International Journal of Production Economics. 152, p. 9-28.

Govindan K., Jafarian A., Nourbakhsh V. (2015). Bi-objective integrating sustainable order allocation and sustainable supply chain network strategic design with stochastic demand using a novel robust hybrid multi-objective metaheuristic. Computers & Operations Research. Article in press: http://dx.doi.org/10.1016/j.cor.2014.12.014.

GRI (2007). Sustainability Reporting Guidelines (G3). The Netherlands, Global Reporting Initiative.

Gruat La Forme-Chretien F. (2007). Référentiel d’évaluation de la performance d’une chaîne logistique - Application à une entreprise de l’ameublement. Thèse de doctorat. Institut National des Sciences Appliquées de Lyon, France.

Guillén-Gosálbeza G. & Grossmann I.E. (2009). Optimal design and planning of sustainable chemical supply chains under uncertainty. AIChe Journal. 55(1), p. 99-121.

Guillén-Gosálbeza G. & Grossmann I. (2010). A global optimization strategy for the environmentally conscious design of chemical supply chains under uncertainty in the damage assessment model. Computers and Chemical Engineering, 34, p. 42-58.

Hugo A. & Pistikopoulos E.N. (2005). Environmentally conscious long-range planning and design of supply chain networks. Journal of Cleaner Production, 13, p. 1471-1491.

Hugo A., Rutter P., Pistikopoulos S., Amorelli A. & Zoia G. (2005). Hydrogen infrastructure strategic planning using multi-objective optimization. International Journal of Hydrogen Energy. 30, p. 1523-1534.

ISO (2006). ISO 14040. Environmental management - Life Cycle assessment - Goal and scope definition, Geneva: ISO.

ISO (2010). ISO 26000. Guidance on social responsibility, Geneva: ISO.

Jamshidi R., Fatemi Ghomi S.M.T. & Karimi B. (2012). Multi-objective green supply chain optimization with a new hybrid memetic algorithm using the Taguchi method. Scientia Iranica, Transactions E: Industrial Engineering.

Jolly C. (2006). L’entreprise responsable, sociale éthique, “verte”… et bénéficiaire ? Éditions du Félin, Paris, France.

Kanzian C., Kühmaier M., Zazgornik J., Stampfer K. (2013). Design of forest energy supply networks using multi-objective optimization. Biomass and Bioenergy, 58 (0), p. 294-302.

Kenné J.P., Dejax P. & Gharbi A. (2012). Production planning of a hybrid manufacturing–remanufacturing system under uncertainty within a closed-loop supply chain. International Journal of production Economics. 135, p. 81-93.

Krikke H., Bloemhof-Ruwaard J. & Van Wassenhove L.N. (2003). Concurrent product and closed-loop supply chain design with an application to refrigerators. International Journal of Production Research. 41(16), p. 3689-3719.

Lam H.L., Ng W.P.Q., Ng R.T.L., Ng H.E., Abdul Aziz M.K., Ng D.K.S. (2013). Green strategy for sustainable waste-to-energy supply chain. Energy. 57(0), 4-16.

Luo Y., Zhou M.C. & Caudill R.J. (2001). An Integrated e-supply chain model for agile and environmentally conscious manufacturing. IEEE/ASME Transactions on Mechatronics. 6(4). p. 377-386.

Mallidis I., Dekker R. & Vlachos D. (2012). The impact of greening on supply chain design and cost: a case for a developing region. Journal of Transport Geography. 22, p. 118-128.

Mallidis I., Vlachos D,. Iakovou E., Dekker R. (2014). Design and planning for green global supply chains under periodic review replenishment policies. Transportation Research Part E. 72, p. 210-235.

Mari S.I., Lee Y.H., Memon M.S. (2014). Sustainable and Resilient Supply Chain Network Design under Disruption Risks. Sustainability, 6, p. 6666-6686.

Marufuzzaman M, Ekşioğlu S.D., Hernandez R. (2014). Environmentally friendly supply chain planning and design for biodiesel production via waste water sludge. Transportation Science. 48(4), p. 555-74.

Mele F.D., Guillén-Gosálbeza G. & Jiménez L. (2009). Optimal Planning of Supply Chains for Bioethanol and Sugar Production with Economic and Environmental Concerns. In 19th European Symposium on Computer Aided Process Engineering – ESCAPE19. Cracow, Poland.

Mele F.D., Kostin A.M., Guillén-Gosálbez G., & Jiménez L. (2011). Multiobjective model for more sustainable fuel supply chains. A case study of the sugar cane industry in Argentina. Industrial & Engineering Chemistry Research. 50(9), p. 4939-4958.

Mirzapour Al-e-hashem S.M.J., Baboli A., & Sazvar Z. (2013). A stochastic aggregate production planning model in a green supply chain: Considering flexible lead times, nonlinear purchase and shortage cost functions. European Journal of Operational Research, 230, p. 26-41.

Mirzapour Al-e-hashem S.M.J., Rekik Y. (2014). Multi-product multi-period Inventory Routing Problem with a transshipment option: A green approach. International Journal of Production Economics, 15, p. 780-88.

Mohajeri A., Fallah M. (2014). Closed-Loop Supply Chain Models with Considering the Environmental Impact. The Scientific World Journal. Article ID 852529.

Mota B, Gomes M.I., Carvalho A., Barbosa-Povoa A. (2014). Towards supply chain sustainability: economic, environmental and social design and planning. Journal of Cleaner Production. Article in press : http://dx.doi.org/10.1016/j.jclepro.2014.07.052.

Nagurney A., Liub Z. & Woolley T. (2006). Optimal endogenous carbon taxes for electric power supply chains with power plants. Mathematical and Computer Modelling, 44, p. 899-916.

Nagurney A. & Nagurney L.S. (2010). Sustainable supply chain network design: a multicriteria perspective. International Journal of Sustainable Engineering, 3(3), p. 189-197.

Nema A.K. & Gupta S.K. (1999). Optimization of regional hazardous waste management systems: an improved formulation. Waste Management, 19, p. 441-451.

OECD (2000). Text of the OECD Guidelines for Multinational Enterprises, Paris, Organisation for Economic Co-operation and Development.

Paksoy T., Pehlivan N.Y. & Özceylan E. (2012). Fuzzy Multi-Objective Optimization of a Green Supply Chain Network with Risk Management that Includes Environmental Hazards. Human and Ecological Risk Assessment: An International Journal. 18(5), p. 1120-1151.

Pati R.K., Vrat P., & Kumarc P. (2008). A goal programming model for paper recycling system. Omega, 36, p. 405-417.

Pérez-Fortes M, Laínez-Aguirre J.M., Arranz-Piera P., Velo E. & Puigjaner L. (2012). Design of regional and sustainable bio-based networks for electricity generation using a multiobjective MILP approach. Energy, 44, p. 79-95.

Pinto-Varela T., Barbosa-Póvoa A.P.F.D. & Novais A.Q. (2011). Bi-objective optimization approach to the design and planning of supply chains: Economic versus environmental performances. Computers and Chemical Engineering, 35, p. 1454-1468.

Pishvaee M.S., Razmi J., Torabi S.A. (2012). Robust possibilistic programming for socially responsible supply chain network design: A new approach. Fuzzy Sets and Systems, 206, p. 1-20.

Pishvaee M.S., Razmi J. (2012). Environmental supply chain network design using multiobjective fuzzy mathematical programming. Applied Mathematical Modelling, 36, p. 3433-3446.

Pishvaee M.S., Razmi J., Torabi S.A. (2014). An accelerated Benders decomposition algorithm for sustainable supply chain network design under uncertainty: a case study of medical needle and syringe supply chain. Transportation Research Part E. 67, p. 14-38.

Pourmohammadi H., Rahimi M. & Dessouky M. (2008). Sustainable Reverse Logistics for Distribution of Industrial Waste/Byproducts: A Joint Optimization of Operation and Environmental Costs. Supply Chain Forum: An International Journal, 9, p. 2-17.

Pozo C., Ruiz-Femenia R., Caballero J., Guillèn-Gosalbez G. & Jimenez L. (2012). On the use of Principal Component Analysis for reducing the number of environmental objectives in multi-objective optimization: Application to the design of chemical supply chains. Chemical Engineering Science, 69(1), 146-158.

Quariguas Frota Neto J., Bloemhof J.M., Van Nunen J.A.E.E. & Van Heck E. (2008). Designing and evaluating sustainable logistics network. International Journal of Production Economics. 111, p. 195-208.

Quariguasi Frota Netoa J., Waltherb G. & Bloemhof J.M. (2010). From closed-loop to sustainable supply chains: the WEEE case. International Journal of Production Research. 48 (15), p. 4463-4481.

Ren J., Tan S., Yang L., Goodsite M.E., Pang C., Dong L. (2015). Optimization of emergy sustainability index for biodiesel supply network design. Energy Conversion and Management. 92, p. 312-321.

Roy B. (1990). The outranking approach and the foundations of ELECTRE methods. Readings in Multiple Criteria Decision Aid. Springer-Verlang ed. B.e.C. C.A., Berlin.

Rubio S., Chamorro A. & Miranda F.J. (2008). Characteristics of the research on reverse logistics (1995-2005). International Journal of Production Research. 46(4), p. 1099-1120.

Saaty T.L. (1980). Analytical Hierarchy Process: Planning, Priority Setting, Resource Allocation, ed. M. Graw-Hill, NY.

Sabio N., Kostin A., Guillén-Gosálbeza G. & Jiménez L. (2012). Holistic minimization of the life cycle environmental impact of hydrogen infrastructures using multi-objective optimization and principal component analysis. International Journal of hydrogen energy. 37, p. 5385-5405.

Sadrnia A., Ismail N., Zulkifli N., Ariffin M.K.A., Nezamabadi-pour H., Mirabi H.A. (2013). Multiobjective optimization model in automotive supply chain networks. Mathematical Problems in Engineering. 3, Article ID 823876.

Saffar M.M., Shakouri H.G., Razmi J. (2014). A new bi-objective mixed integer linear programming for designing a supply chain considering CO2 emission. Uncertain Supply Chain Management. 2(4), p. 275-92.

Saffar M.M., Shakouri H.G., Razmi J. (2015). A new multi objective optimization model for designing a green supply chain network under uncertainty. International Journal of Industrial Engineering Computations. 6, p. 15-32.

SCC (2008). Supply Chain Operations Reference Model, 651 p. Cypress, Texas, Etats-Unis: Supply Chain Council. Available at: http://supply-chain.org/.

Santibañez-Aguilar J.E., González-Campos J.B., Ponce-Ortega J.M., Serna-González M., El-Halwagi M.M. (2014). Optimal planning and site selection for distributed multi-product bio-refineries involving economic environmental and social objectives. Journal of Cleaner Production. 65(0), p. 270-94.

Shaw K., Yadav S.S. & Thakur L.S. (2012). Supplier selection using fuzzy AHP and fuzzy multi-objective linear programming for developing low carbon supply chain. Expert Systems with Applications. 39, p. 8182-8192.

Shiue Y. & Lin C. (2012) Applying analytic network process to evaluate the optimal recycling strategy in upstream of solar energy industry. Energy and Buildings. 54, p. 266-277.

Subramanian R., Talbot B. & Gupta S. (2010). An Approach to Integrating Environmental Considerations within Managerial Decision-Making. Journal of Industrial Ecology. 14, p. 378-398.

Tekiner-Mogulkoc H., Coit D.W. & Felder F.A. (2012). Electric power system generation expansion plans considering the impact of Smart Grid technologies. Electrical Power and Energy Systems, 42, p. 229-239.

Tsao Y.C. (2015). Design of a carbon-efficient supply-chain network under trade credits. International Journal of Systems Science: Operations & Logistics. 2(3), p. 177-186.

Validi S., Bhattacharya A., Byrne P.J. (2014a). A case analysis of a sustainable food supply chain distribution system - A multi-objective approach. International Journal of Production Economics. 152, p. 71-87.

Validi S., Bhattacharya A., Byrne P.J. (2014b). Integrated low-carbon distribution system for the demand side of a product distribution supply chain: a DoE-guided MOPSO optimiserbased solution approach. International Journal of Production Research. 52(10), 3074-3096.

Wang F., Lai X. & Shi N. (2011). Multi-objective optimization for green supply chain network design. Decision Support Systems. 51(2). p. 262-269.

Xifeng T., Ji Z., Peng X. (2013). A multi-objective optimization model for sustainable logistics facility location. Transportation Research Part D : Transport and Environment. 22, p. 45-8.

You F., Tao L., Graziano D.J. & Snyder S.W. (2011). Optimal Design of Sustainable Cellulosic Biofuel Supply Chains: Multiobjective Optimization Coupled with Life Cycle Assessment and Input–Output Analysis. AIChe Journal. 58, p. 1157-1180.

You F. & Wang B. (2011). Life Cycle Optimization of Biomass-to-Liquids Supply Chains with Distributed-Centralized Processing Networks. Industrial & Engineering Chemistry Research. 50, p. 10102-10127.

Yu H., Solvang W.D., Chen C. (2014). A green supply chain network design model for enhancing competitiveness and sustainability of companies in high north arctic regions. International Journal of Energy and Environment. 5(4), p. 403-418.

Zhang M., Wiegmans B., Tavasszy L. (2013). Optimization of multimodal networks including environmental costs: a model and findings for transport policy. Computers in Industry. 64(2), p. 136-45.