Ceria-Based Materials for High-Temperature Electrochemistry Applications

Ceria-Based Materials for High-Temperature Electrochemistry Applications

E. Yu. Pikalova A. A. Kolchugin V. G. Bamburov 

Institute of High Temperature Electrochemistry, UB RAS, Russia

Department of Environmental Economics, Ural Federal University, Russia

Institute of Solid State Chemistry, UB RAS, Russia

Page: 
272-283
|
DOI: 
https://doi.org/10.2495/EQ-V1-N3-272-283
Received: 
N/A
| |
Accepted: 
N/A
| | Citation

OPEN ACCESS

Abstract: 

This paper describes the experimental studies of multi-component solid state electrolytes based on CeO2 and their application in intermediate temperature electrochemical devices. Two important aspects are emphasized: the effect of different dopants’ ionic radius and concentration on the electrical properties of CeO2-based solid solutions in air and the influence of combined dopants on the electrolytic properties of solid electrolytes from the standpoint of the critical oxygen partial pressure pO2 at which point the values of the electronic and ionic components of conductivity are equal. Examples of usage of the developed multi-component Ce0.8(Sm0.75Sr0.2Ba0.05)0.2O2-δ  electrolyte synthesized by solid state, laser evaporation and combustion methods and composites on the base of Ce0.8(Sm0.8Sr0.2)0.2O2−δ  electrolyte as a component of electrochemical devices such as solid oxide fuel cell, gas sensors and as a component of the mixed ionic and electronic conducting (MIEC) membranes for hydrogen and syngas gas production are cited.

Keywords: 

CeO2, electrolytic domain boundary, energy production, hydrogen production, MIEC membranes, oxygen conductivity, potentiometric gas sensor, SOFC, solid-state electrolytes

  References

[1] Irvine, J.T.S. & Connor, P. (eds), Solid Oxide Fuel Cells: Facts and Figure, Green Energy and Technology, Springer-Verlag: London, pp. 1–231, 2013. http://dx.doi.org/10.1007/978-1-4471-4456-4

[2] European Commission’s Communication, Energy 2020 – A Strategy for Competitive, Sustainable and Secure Energy, Brussels, 2010. www.inforse.org/europe/eu_EE_ener- gystrategy2020.htm.

[3] Korovin, N.V., Fuel Cells and Electrochemical Energy Systems, MEI: Moscow pp. 1–280, 2005.

[4] Fuel Cell Annual Review, 4th Energy Wave, 2014, www.4thenergywave.co.uk/wp- content/plugins/datavisualisation/data/Fuel-Cell-Annual-Review-2013.pdf.

[5] Skolkovo Fund projects in the field of power-efficient technologies, http://esco-ecosys. narod.ru/esco/2013_4/art32.pdf.

[6] Mogensen, M., Sammes, N.M. & Tompsett, A.G., Physical, chemical and electrochemi- cal properties of pure and doped ceria. Solid State Ionics, 129(1–4), pp. 63–94, 2000. http://dx.doi.org/10.1016/S0167-2738(99)00318-5

[7] Antonucci, V., Antonucci, P.L., Gullo, L., La Rosa, D. & Siracusano, S., Advanced (electro) ceramics and innovative energy technologies. Journal of European Ceramic Society, 24, pp. 1337–1342, 2004. http://dx.doi.org/10.1016/S0955-2219(03)00560-0

[8] Ilhan, Z., Ansar, A. & Soysal, D., Recent progress in intermediate temperature SOFCs (ITSOFCs) Development at DLR, Institute of Electrochemistry and Energy Systems. Proceedings of the International Workshop Advances and Innovations in SOFCs, Katarino, Bulgaria, pp. 30–36, 2011.

[9] Nesaraj, A.S., Recent developments in solid oxide fuel cell technologies – a review. Journal of Scientific and Industrial Research, 69, pp. 169–176, 2010.

[10] Kharton, V.V., Yaremchenko, A.A., Naumovich, A.A. & Marques, F.M.B., Research on the electrochemistry of oxygen ion conductors in the former Soviet Union. III. HfO2, CeO2- and ThO2-based oxides. Journal of Solid State Electrochemistry, 4, pp. 243–266, 2000. http://dx.doi.org/10.1007/s100080050202

[11] Maricle, D.L., Swarr, T.E. & Karavolis, S., Enhanced ceria – a low-temperature SOFC electrolyte. Solid State Ionics, 52(1–3), pp. 173–182, 1992. http://dx.doi.org/10.1016/0167-2738(92)90103-V

[12] Mori, T., Drennan, J., Wang, Y., Li, J.-G. & Ikegami T., Influence of nano-structure on electrolytic properties in CeO2 based system. Journal of Thermal Analysis and  Calo-rimetry, 70, pp. 309–319, 2002. http://dx.doi.org/10.1023/A:1021691500201

[13] Pikalova, E.Yu., Bamburov, V.G., Rukavishnikova, I.V., Demin, A.K. &. Kolchugin, A.A., Development of electrolytes for intermediate temperature solid oxide fuel cells. WIT Transactions on Ecology and the Environment, 190(1), pp. 261–272, 2014. http://dx.doi.org/10.2495/EQ140261

[14] Gorelov, V.P., Zayats, S.V., Ivanov, V.V., Ivin, S.Yu., Kotov, Yu.A., Medvedev, A.I., Moskalenko, N.I., Murzakaev, A.M., Samatov, O.M. & Khrustov, V.R.,  Gadolinium-doped ceria ceramica with a submicron structure for electrochemical applications. Glass Physics and Chemistry, 31(4), pp. 471–476, 2005. http://dx.doi.org/10.1007/s10720-005-0085-x

[15] Pikalova, E.Yu., Nikonov, A.V., Zhuravlev, V.D., Bamburov, V.G., Samatov, O.M., Lipilin, A.S., Khrustov, V.R., Nikolaenko, I.V., Plaksin, S.V. & Molchanova, N.G., Effect of the synthesis technique on the physicochemical properties of Ce0.8(Sm0.75Sr0.2Ba0.05)0.2O2–. Inorganic Materials, 47(4), pp. 396–401, 2011. http://dx.doi.org/10.1134/S0020168511040170

[16] Ivanov, V.V., Paranin S.N. & Vikhrev A.N., Method of pulsed pressing of solid powder materials and the setup for its implementation, Patent RU 2083328, 1996.

[17] Yaroslavtsev, I.Yu., Kuzin, B.L., Bronin, D.I., Vdovin, G.K. & Bogdanovich, N.M., Cathodes based on (La,Sr)MnO3 modified with PrO2-x. Russian Journal of Elecrochemistry, 45, pp. 875–880, 2009.http://dx.doi.org/10.1134/S1023193509080060

[18] Sha, X., Lü, Z., Huang, X., Miao, J., Ding, Z., Xin, X. & Su, W., Study on La and Y co-doped ceria-based electrolyte materials. Journal of Alloys and Compounds, 428, pp. 59–64, 2007. http://dx.doi.org/10.1016/j.jallcom.2006.03.077

[19] Pikalova, E.Yu, Murashkina, A.A. & Medvedev, D.A., Structural and electric properties of the Ce0.8(Sm1-xCax)0.2O2-system (x = 0.0–1.0). Russian Journal of Electrochemis- try, 47(6), pp. 681–689, 2011. http://dx.doi.org/10.1134/S1023193511060115

[20] Yeh, T.-H. & Chou, C.-C., Ionic conductivity investigation in samarium and strontium co-doped ceria system. Physica Scripta, T129, pp. 303–307, 2007. http://dx.doi.org/10.1088/0031-8949/2007/T129/067

[21] Mori, T. & Yamamura, H., Preparation of an alkali-element or alkali-earth-element- doped CeO2–Sm2O3 system and its operation properties as the electrolyte in planar solid oxide fuel cells. Journal of Materials Synthesis and Processing, 6, pp. 175–179, 1998. http://dx.doi.org/10.1023/A:1022669519414

[22] Kilner, J.A. & Brook, R.J., Study of oxygen ion conductivity in doped non-stoichiometric oxides. Solid State Ionics, 6(3), pp. 237–252, 1982. http://dx.doi.org/10.1016/0167-2738(82)90045-5

[23] Mori, T., Drennan, J., Wang, Y., Lee, J.-H., Li, J.-G. & Ikegami T., Electrolytic proper- ties and nanostructural features in the La2O3–CeO2 System. Journal of the Electro- chemical Society, 150(6), pp. A665–A673, 2003. http://dx.doi.org/10.1149/1.1567265

[24] Pikalova, E.Yu., Fadeev, G.I., Kalyakin, A.S., Demin, A.C. & Somov, S.I., Potentio- metric cell with oxygen-conducting solid electrolyte based on ceria. Russian Journal of Electrochemistry, 46(7), pp. 820–826, 2010. http://dx.doi.org/10.1134/S1023193510070165

[25] Pikalova, E.Yu., Murashkina, A.A., Medvedev, D.A., Pikalov, P.S. & Plaksin,  S.V., Microstructure and electrical properties of the composites based on SrTi0.5Fe0.5 O3-andCe0.8(Sm0.8Sr0.2)0.2O2-. Solid State Ionics, 262, pp. 640–644, 2014.

[26] Murashkina, A., Pikalova, E., Medvedev, D., Demin A. & Tsiakaras P., Hydrogen pro- duction aided by new (1-x)SrTi0.5Fe0.5O3-−xCe0.8(Sm0.8Sr0.2)0.2O2-(MIEC) composite membranes. International Journal of Hydrogen Energy, 39, pp. 12472–12479, 2014. http://dx.doi.org/10.1016/j.ijhydene.2014.06.068

[27] Pikalova, E., Murashkina, A., Medvedev, D. & Demin, A., Solid oxide composite mate- rial for membranes of electrochemical devices, Patent RU 2510385, 2014.