Increased Temperature in Urban Ground as Source of Sustainable Energy

Increased Temperature in Urban Ground as Source of Sustainable Energy

J. Rivera S. Benz P. Blum P. Bayer 

ETH Zurich, Department of Earth Sciences, Switzerland

Karlsruhe Institute of Technology (KIT), Institute for Applied Geosciences (AGW), Germany

Page: 
263-271
|
DOI: 
https://doi.org/10.2495/EQ-V1-N3-263-271
Received: 
N/A
| |
Accepted: 
N/A
| | Citation

OPEN ACCESS

Abstract: 

Densely urbanized areas are characterized by special microclimatic conditions with typically elevated temperatures in comparison with the rural surrounding. This phenomenon is known as the urban heat island (UHI) effect, but not restricted exclusively to the atmosphere. We also find significant warming of the urban subsurface and shallow groundwater bodies. Here, main sources of heat are elevated ground surface temperatures, direct thermal exploitation of aquifers and heat losses from buildings and other infrastructure. By measuring the shallow groundwater temperature in several European cities, we identify that heat sources and associated transport processes interact at multiple spatial and temporal scales. The intensity of a subsurface UHI can reach the values of above 4 K in city centres with hotspots featuring temperatures up to +20°C. In comparison with atmospheric UHIs, subsurface UHIs represent long-term accumulations of heat in a relatively sluggish environment. This potentially impairs urban groundwater quality and permanently influences subsurface ecosystems. From another point of view, however, these thermal anomalies can also be seen as hidden large-scale batteries that constitute a source of shallow geothermal energy. Based on our measurements, data surveys and estimated physical ground properties, it is possible to estimate the theoretical geothermal potential of the urban groundwater bodies beneath the studied cities. For instance, by decreasing the elevated temperature of the shallow aquifer in Cologne, Germany, by only 2 K, the obtained energy could supply the space-heating demand of the entire city for at least 2.5 years. In the city of Karlsruhe, it is estimated that about 30% of annual heating demand could be sustainably supplied by tapping the anthropogenic heat loss in the urban aquifer. These results reveal the attractive potential of heated urban ground as energy reservoir and storage, which is in place at many places worldwide but so far not integrated in any city energy plans.

Keywords: 

energy waste, shallow geothermal energy, sustainability, urban aquifers

  References

[1] Ferguson, G. & Woodbury, A.D., Subsurface heat flow in an urban environment. Journal of Geophysical Research: Solid Earth, 109(B2), 2014.

[2] Taylor, C.A. & Stefan, H.G., Shallow groundwater temperature response to climate change and urbanization. Journal of Hydrology, 375(3), pp. 601–612, 2009. http://dx.doi.org/10.1016/j.jhydrol.2009.07.009

[3] Eggleston, J. & McCoy, K.J., Assessing the magnitude and timing of anthropogenic warming of a shallow aquifer: example from Virginia Beach, USA. Hydrogeology Journal, 23, pp. 105–120, 2015. http://dx.doi.org/10.1007/s10040-014-1189-y

[4] Balke, K., Das Grundwasser als Energieträger. Brennstoff-Wärme-Kraft, 29, pp. 191– 194, 1977.

[5] Menberg, K., Bayer, P., Zosseder, K., Rumohr, S. & Blum, P., Subsurface urban heat islands in German cities. Science of the Total Environment, 442, pp. 123–133, 2013. http://dx.doi.org/10.1016/j.scitotenv.2012.10.043

[6] Müller, N., Kuttler, W. & Barlag, A.-B., Analysis of the subsurface urban heat island in Oberhausen, Germany. Climate Research, 58(3), pp. 247–256, 2014. http://dx.doi.org/10.3354/cr01195

[7] García-Gil, A., Vazquez-Sune, E., Garrido Schneider, E., Angel Sanchez-Navarro, J. & Mateo-Lazaro, J., The thermal consequences of river-level variations in an urban groundwater body highly affected by groundwater heat pumps. Science of The Total Environment, 485–486, pp. 575–587, 2014. http://dx.doi.org/10.1016/j.scitotenv.2014.03.123

[8] Epting, J. & Huggenberger, P., Unraveling the heat island effect observed in urban groundwater bodies – Definition of a potential natural state. Journal of Hydrology, 501, pp. 193–204, 2013. http://dx.doi.org/10.1016/j.jhydrol.2013.08.002

[9] Taniguchi, M., Shimada, J., Tanaka, T., Kayane, I, Sakura, Y., Shimano, Y., Dapaah- Siakwan, S. & Kawashima, S., Disturbances of temperature depth profiles due to sur- face climate change and subsurface water flow: 1. An effect of linear increase in surface temperature caused by global warming and urbanization in the Tokyo Metropolitan Area, Japan. Water Resources Research, 35(5), pp. 1507–1517, 1999. http://dx.doi.org/10.1029/1999WR900009

[10] Yamano, M., Evolution of the Subsurface Thermal Environment in Urban Areas: Studies in Large Cities in East Asia, in Groundwater and Subsurface Environments, Springer, pp. 201–230, 2011. http://dx.doi.org/10.1007/978-4-431-53904-9_11

[11] Liu, C., Shi B., Tang, C. & Gao, L., A numerical and field Investigation of under- ground temperatures under urban heat island. Building and Environment, 46(5), pp. 1205–1210, 2011. http://dx.doi.org/10.1016/j.buildenv.2010.12.015

[12] Zhan, W., Ju, W., Hai, S., Ferguson, G., Quan, J., Tang, C., Guo, Z. & Kong, F., Satel- lite-derived subsurface urban heat island. Environmental Science & Technology, 48, pp. 12134–12140, 2014. http://dx.doi.org/10.1021/es5021185

[13] Hötzl, H. & Makurat, A., Veränderungen der Grundwassertemperaturen unter dicht bebauten Flächen am Beispiel der Stadt Karlsruhe. Zeitschrift der Deutschen Geolo- gischen Gesellschaft, 132, pp. 767–777, 1981.

[14] Bonte, M., Stuyfzand, P.J., Hulsmann, A. & Van Beelen, P., Underground thermal energy storage: environmental risks and policy developments in the Netherlands and European Union. Ecology and Society, 16(1), p. 22, 2011.

[15] Brielmann, H., Griebler, C., Schmidt, SI., Michel, R. & Lueders, T., Effects of thermal energy discharge on shallow groundwater ecosystems. FEMS Microbiology Ecology, 68(3), pp. 273–286, 2009. http://dx.doi.org/10.1111/j.1574-6941.2009.00674.x

[16] Allen, A., Milenic, D. & Sikora, P., Shallow gravel aquifers and the urban ‘heat island’effect: a source of low enthalpy geothermal energy. Geothermics, 32(4), pp. 569–578, 2003. http://dx.doi.org/10.1016/S0375-6505(03)00063-4

[17] Arola, T. & Korkka-Niemi, K.,The effect of urban heat islands on geothermal potential: examples from Quaternary aquifers in Finland. Hydrogeology Journal, 22, pp. 1–15, 2014. http://dx.doi.org/10.1007/s10040-014-1174-5

[18] Sinnathamby, G., Gustavsson, H., Korkiala-Tanttu, L. & Perez Cervera, C., Numerical analysis of seasonal heat storage systems of alternative geothermal energy pile founda- tions. Journal of Energy Engineering, 141, 2014.

[19] Zhu, K., Blum, P., Ferguson, G., Balke, K.D. & Bayer, P., The geothermal potential of urban heat islands. Environmental Research Letters, 6, 2011. http://dx.doi.org/10.1088/1748-9326/6/1/019501

[20] Zhang, Y., Soga, K. & Choudhary, R., Shallow geothermal energy application with GSHPs at city scale: study on the city of Westminster. Géotechnique Letters, 4, pp. 125–131, 2014. http://dx.doi.org/10.1680/geolett.13.00061

[21] Hähnlein, S., Bayer, P., Ferguson, G. & Blum, P., Sustainability and policy for the thermal use of shallow geothermal energy. Energy Policy, 59, pp. 914–925, 2013. http://dx.doi.org/10.1016/j.enpol.2013.04.040

[22] Vienken, T., Schelenz, S., Rink, K. & Dietrich, P.,Sustainable intensive thermal use of the shallow subsurface—a critical view on the status quo. Groundwater, 53, pp. 356–361, 2014, doi: 10.1111/gwat.12206. http://dx.doi.org/10.1111/gwat.12206

[23] Banks, D., An Introduction to Thermogeology: Ground Source Heating and Cooling, John Wiley & Sons: Oxford, 2012. http://dx.doi.org/10.1002/9781118447512

[24] Rybach, L. & Eugster, W.J., Sustainability aspects of geothermal heat pump operation, with experience from Switzerland. Geothermics, 39(4), pp. 365–369, 2010. http://dx.doi.org/10.1016/j.geothermics.2010.08.002

[25] Rivera, J.A., Blum, P. & Bayer, P., Ground energy balance for borehole heat exchang- ers: Vertical fluxes, groundwater and storage. Renewable Energy, 83, pp. 1341–1351, 2015. http://dx.doi.org/10.1016/j.renene.2015.05.051

[26] Henning, A. & Limberg, A., Veränderung des oberflächennahen Temperaturfeldes von Berlin durch Klimawandel und Urbanisierung. Brandenburgische Geowiss. Beitr, 19(1), pp. 81–92, 2012.

[27] Dohr, F., Die Grundwassertemperatur im oberflächennahen Grundwasser des Stadtgebietes München (PhD thesis), Ludwig-Maximilians-Universität: Munich, 1989.

[28] Hannappel, S. & Limberg, A., Ermittlung des Flurabstandes des oberflächennahen Grundwassers in Berlin (Determination of the floor distance of shallow groundwater in Berlin). Brandenburg Geowiss Beitr, 14, pp. 65–74, 2007.

[29] Seiler, K., Durchlässigkeit und Porosität von Lockergesteinen in Oberbayern. Mitteilung zur Ing.-u. Hydogeologie, 9, pp. 105–126, 1979.

[30] Zosseder, K., Heterogenitäten bei PAK-Kontaminationen im Grundwasser. Bochumer Geowiss. Arb, 12, p. 236, 2007.

[31] Geyer, O.F. & Gwinner, M.P., Geologie von Baden-Württemberg, 5 edn., Stuttgart: Schweizerbart, 2011.

[32] VDI., Thermische Nutzung des Untergrundes (Guideline for thermal use of the under- ground). In VDI-Richtlinie 4640, Verein Deutscher Ingenieure (VDI)-Gesellschaft Energietechnik: Germany, 2012.

[33] Limberg, A. & Thierbach, J., Hydrostratigraphie in Berlin - Korrelation mit dem Norddeutschen Gliederungsschema. Brandenburgische Geowissenschaftliche Beiträge, 9, pp. 65–68, 2002.

[34] Kerl, M., Runge, N., Tauchmann, H. & Goldscheider, N., Hydrogeologisches Konzept- modell von München: Grundlage für die thermische Grundwassernutzung. Grundwas- ser, 17(3), pp. 127–135, 2012. http://dx.doi.org/10.1007/s00767-012-0199-8

[35] Schafer, W., Wickert, F. & Tiehm, A., Modellrechnungen zur Quantifizierung von NA-Prozessen fur den LCKW-Schadensfall in Karlsruhe-Ost/Killisfeld. Grundwasser, 12(2), pp. 108–124, 2007.

[36] Prinz, H. & Strauss, R., Abriss der Ingenieurgeologie,Elsevier Spektrum akademischer Verlag: München, p. 671, 2006.

[37] Timm, U., Wohnsituation in Deutschland 2006 - Ergebnisse der Mikrozensus-Zusatzer- hebung, in Wirtschaft und Statistik, Statistisches Bundesamt: Wiesbaden, 2008.

[38] Menberg, K., Blum, P., Schaffitel, A. & Bayer, P., Long-term evolution of anthropo- genic heat fluxes into a subsurface urban heat island. Environmental Science & Technol- ogy, 47(17), pp. 9747–9755, 2013. http://dx.doi.org/10.1021/es401546u

[39] Benz, S.A., Bayer, P., Menberg, K., Jung, S. & Blum, P., Spatial resolution of anthropo- genic heat fluxes into urban aquifers. Science of The Total Environment, 524–525, pp. 427–439, 2015. http://dx.doi.org/10.1016/j.scitotenv.2015.04.003