Application of High-Purity Zeolite a Synthesized from Different Coal Combustion by-Products in Carbon Dioxide Capture

Application of High-Purity Zeolite a Synthesized from Different Coal Combustion by-Products in Carbon Dioxide Capture

Juliana Izidoro Davi Castanho Carlos Rossati Denise Fungaro Sabine Guilhen Thiago Nogueira Maria De Fátima Andrade

Centro de Química e Meio Ambiente, Instituto de Pesquisas Energéticas e Nucleares, Brazil

Departamento de Saúde Ambiental, Faculdade de Saúde Pública, Universidade de São Paulo, Brazil

Instituto de Astronomia, Geofísica e Ciências Atmosféricas, Universidade de São Paulo, Brazil

Page: 
215-228
|
DOI: 
https://doi.org/10.2495/EI-V2-N3-215-228
Received: 
N/A
|
Revised: 
N/A
|
Accepted: 
N/A
|
Available online: 
N/A
| Citation

OPEN ACCESS

Abstract: 

High-purity zeolites A were synthesized from different coal combustion by-products (baghouse filter fly ash, cyclone filter ash, and bottom ash) and characterized in terms of morphology, chemical, and mineralogical composition. The products were tested for carbon dioxide capture by using a continuous CO2  flow system passing through a column packed with the adsorbent material, which was connected to an analyser that directly measures the concentration of CO2 The values of CO2 adsorption capacities calculated for the unmodified Na-A zeolites (ZABF, ZACF, and ZABA) were 556.48, 494.29 and 654.82 mg g–1, respectively. These values were higher than those achieved by the calcium-modified zeolite samples. ZABA adsorbent presented the best performance in CO2 capture when compared to the other adsorbent material and achieved an adsorption capacity 32% higher than a 4A commercial zeolite. In the adsorption cycles study, the percentage of CO2 desorption by ZABA at the second and hird cycles reached 93%, showing that zeolite A can be regenerated by heating at 150 ºC. The use of coal ashes to obtain zeolites and the application of these products for the CO2  adsorption can be an important strategy to mitigate both the problem of waste management and the greenhouse gases emission in coal-fired power plants.

Keywords: 

carbon dioxide capture, coal combustion by-products, zeolite A

  References

[1] Intergovernamental Panel on Climate Change – IPCC – Global warming of 1.5°C., Online, https://www.ipcc.ch/sr15/. Accessed on: 14 Jan. 2018.

[2] Izidoro, J. C., Fungaro, D. A., Abbott, J. E. & Wang, S., Synthesis of zeolites X and A from fly ashes for cadmium and zinc removal from aqueous solutions in single and binary ion systems. Fuel. 103 (1), pp. 827–834, 2012.

[3] Ahmaruzzaman, M. A review on the utilization of fly ash. Prog. Energ. Combust. 36, pp. 327–363, 2010.

[4] Yao, Z. T., Ji, X. S., Sarker, P. K., Tang, J. H., Ge, L. Q., Xia, M. S. & Xi, Y. Q., A comprehensive review on the applications of coal fly ash. Earth Sci Rev. 141, pp. 105–121, 2015.

[5] Herzog, H. J., What future for carbon capture and sequestration? Environ. Sci. Technol. 35, pp. 148–153, 2001.

[6] Yang, H., Xu, Z., Fan, M., Gupta, R., Slimane, R. B. & Bland, A. E., Progress in carbon dioxide separation and capture: A review. J. Environ. Sci. 20, pp. 14–27, 2008.

[7] Samanta, A., Zhao, A., Shimizu, G. K. H., Sarkar, P. & Gupta, R. Post-combustion CO2 capture using solid sorbents: A review. Ind. & Eng. Chem. Res., 51, pp. 1438–1463, 2012.

[8] Song, C., Xu, X., Miller, B. G. & Scaroni, A. W., Adsorption separation of carbon dioxide from flue gas of natural gas-fired boiler by a novel nanoporous “molecular basket”adsorbent. Fuel Proc. Technol. 86, pp. 1457–1472, 2005.

[9] Querol, X., Moreno, N., Umaña, J. C., Juan, R., Hernandez, S., Fernandez, P. C., Ayora, C., Janssen, M., Garcia, J. M. J., Linares, S. A. & Cazorla, A. D., Application of zeolitic material synthesized from fly ash to the decontamination of waste water and flue gas. J. Chem. Technol. Biotechnol. 77, pp. 292–298, 2002.

[10] Majchrzak-Kuceba, I. & Nowak, W., A thermogravimetric study of the adsorption of CO2 on zeolite synthesized from fl y ash. Thermochim. Acta. 437, pp. 67–74, 2005.

[11] Bonenfant, D., Kharoune, M., Niquette, P., Mimeault, M. & Hausler, R., Advances in principal factors influencing carbon dioxide adsorption on zeolites. Sci. Technol. Adv. Mater. 9, pp. 1–7, 2008.

[12] Li, G. K., Singh, R., Xiao, P. & Zhai, Y., Zeolite synthesis from waste fly ash and its application in CO2 capture from flue gas streams. Adsorption. 17 (5), pp. 795–800, 2011.

[13] Ojha, K., Pradhan, N. M. C. & Samanta, A. M. Zeolite from fly ash: synthesis and characterization. Bull. Mater. Sci. 27, pp. 555–564, 2004.

[14] El-Naggar, M. R., El-Kamash, A. M., El-Dessouky, M. I. & Ghonaim, A. K., Two-step method for preparation of NaA-X zeolite blend from fly ash for removal of cesium ions. J. Hazard. Mater. 154, pp. 963–972, 2008.

[15] Beltrao-Nunes, A. P., Sennour, R., Arus, V. A., Anoma, S., Pires, M., Bouazizi, N. & Roy, R., Azzouz, A., CO2 capture by coal ash-deriving zeolites- roles of the intrinsic basicity and hydrophilic character. Journal of Alloys and Compounds. 778, pp. 866–877, 2018.

[16] Lee, K-M. & Jo, Y-M., Synthesis of zeolite from waste fly ash for adsorption of CO2. J Mater Cycles Waste Manag. 12, pp. 212–219, 2010.

[17] Rossatti, C., Castanho, D., Izidoro, J. C. & Fungaro, D. A., Otimização da síntese de zeólita Na-a de elevada purezaobtida a partir de cinzas volantes de carvão. V Congresso Brasileiro de Carvão Mineral- VCBCM, p. 006, Santa Catarina, 2017.

[18] Izidoro, J. C., Miranda, C., Ghilhen, S. N. & Fungaro, D. A., Chemical, mineralogical and environmental characterization of combustion by-products generated from mineral coal used for electricity production. Proceedings of the 13th International Conference on Materials Chemistry – MC13, p. 046, 2017.

[19] Izidoro, J. C., Miranda, C. S., Guilhen, S. N., Fungaro, D. A. & Wang, S., Treatment of coal ash landfill leachate using zeolitic materials from coal combustion by-products. Adv Mat Tech Env. 2 (1), pp. 177–186, 2018.

[20] Chang, H-L. & Shih, W-H., A general method for the conversion of fly ash into zeolites as ion exchangers for cesium. Ind Eng Chem Res. 37, pp. 71–78, 1998.

[21] Wang, C-F., Li, J-S., Wang, L-J. & Sun, X-Y., Influence of NaOH concentrations on synthesis of pure-form zeolite A from fly ash using two-stage method. J Hazard Mater. 155, pp. 58–64, 2008.

[22] Tanaka, H. & Fujii, A., Effect of stirring on the dissolution of coal fly ash and synthesis of pure-form Na-A and –X zeolites by two-step process. Adv Powder Technol. 20, pp. 473–479, 2009.

[23] Hollman, G., Steenbruggen, G. & Jansen-Jurkovicova, M., A two-step process for the synthesis of zeolites from coal fly ash. Fuel. 78, pp. 1225–1230, 1999.

[24] Ye, Y., Zeng, X., Qian, W. & Wang, M., Synthesis of pure zeolites from supersaturated silicon and aluminum alkali extracts from fused coal fly ash. Fuel. 87, pp. 880–886, 2008.

[25] Costa, B. M., Síntese de zeólitas a partir de cinzas de carvão para captura de dióxido de carbono. Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, pp. 91, 2016.

[26] Sayari, A., Belmabkhout, Y. & Serna-Guerrero, R., Flue Gas Treatment via CO2 Adsorption. Chem. Eng. J. 171, pp. 760–774, 2011.