Sensitivity of Structural Damage to Earthquake Ground Motion Scenarios. The Torrevieja Earthquake Case Study

Sensitivity of Structural Damage to Earthquake Ground Motion Scenarios. The Torrevieja Earthquake Case Study

N. Agea-Medina S. Molina-Palacios D.H. Lang I. Ferreiro-Prieto J.A. Huesca J.J. Galiana-Merino J.L. Soler-Llorens

Dpto. Ciencias de la Tierra y del Medio Ambiente, Universidad de Alicante, Spain

NORSAR, Department of Earthquake Hazard and Risk, Kjeller, Norway

Dpto. Expresion Grafica y Cartografia, Universidad de Alicante, Spain

Dpto. Construcciones Arquitectónicas, Universidad de Alicante, Spain

Dpto. Fisica, Ingenieria de Sistemas y Teoria de la Señal, Universidad de Alicante, Spain

Page: 
921-932
|
DOI: 
https://doi.org/10.2495/CMEM-V6-N5-921-932
Received: 
N/A
| |
Accepted: 
N/A
| | Citation

OPEN ACCESS

Abstract: 

Structural damage computation using analytical methods requires the knowledge of the ground motion distribution in the urban area caused by a given earthquake. In this manuscript, the ground motion estimates (i.e. PGA and spectral acceleration values) are obtained through simulation of the 1829 Torrevieja earthquake using the NGA ground motion prediction equations (GMPE). The building stock under consideration has been classified according to the methodology presented in RISK-UE. The computations have been done using the last version of the software SELENA. The epistemic uncertainties of the analysis are accounted for by means of a logic tree computation scheme. The logic tree has two branches for the uncertainty in the earthquake scenario, two branches for the GMPEs and three branches to consider the uncertainties in average shear wave velocity Vs30 (soil conditions). Results indicate large differences derived for the different earthquake loss scenarios (ELE) obtained following each branch of the logic tree.

The greatest structural damages and losses are obtained when the earthquake is located in the Bajo Segura fault zone, using Campbell and Bozorgnia GMPE and for soft soil conditions. This article has allowed us to see how the different possible input parameters for ELE should be carefully analyzed for each case study and the importance of providing ELE results in terms of mean values with corresponding uncertainty ranges.

Keywords: 

analytical method, earthquake damage, epistemic uncertainty, seismic risk, seismic vulnerability

  References

[1] Grünthal, G. (Ed.), European macroseismic scale 1998. Cahiers du Centre Européen de Géodynamique et de Séismologie, 7, pp. 1–99, 1998.

[2] Martinez Solares, J.M. & Mezcua, J., Catálogo sísmico de la Península Ibérica (880a. C.–1900), Monograph nº 18. Instituto Geográfico Nacional, Madrid, publication, p. 303, 2002.

[3] Albini, P. & Rodriguez de la Torre F., The 1828–1829 earthquake sequence in the provinces of Murcia and Alicante (Southeastern Spain): a reappraisal of the historical sources, The use of historical data in natural hazards assessments, eds. Glade T, Albini P, Frances F, Kluwer: Dordrecht, pp. 35–54, 2001.

[4] Larramendi, J.A., Memoria y relación circunstanciada de los estragos que la terrible catástrofe de los terremotos de 2,1 de marzo y siguientes, principalmente el del sábado Santo l 8 de abril hasta el presente día, han causado en Torrevieja y demás pueblos de la gobernación de Orihuela y sus inmediaciones, en la ciudad de Murcia y algunos pueblos de la provincial. Biblioteca Nacional de España. Imprenta Real, Madrid, 1829.

[5] Alfaro, P., Bartolomé, R., Borque, M.J., Estevez, A., García-Mayordomo, J., García-Tortosa, F.J., Gil, A.J., Gràcia, E., Lo Iacono, C. & Perea, H., The Bajo Segura fault zone: active blind thrusting in the eastern betic cordillera (SE Spain). Journal of Iberian Geology, 38(1), pp. 271–284, 2012.https://doi.org/10.5209/rev_jige.2012.v38.n1.39217

[6] Delgado, J. & López Casado, C., El terremoto de 1829. La catástrofe sísmica de 1829 y sus repercusiones, ed. G. Canales, Excma. Dip. Provincial de Alicante, Excmo. Ayto. Almoradí and Universidad de Alicante, 1999.

[7] Muñoz, D. & Udías, A., Three large historical earthquakes in Southern Spain. Seismicity, Seismotectonics and Seismic Risk of the Ibero-Maghrebian Region, ed. J. Mézcua andA. Udías, Publ. Inst. Geogr. Nac, 8, pp. 175–182. Madrid, 1991.

[8] Mena, U., Evaluación del Riesgo Sísmico en Zonas Urbanas, PhD. Thesis, Barcelona. Dpto. Ingeniería del Terreno, Cartográfica y Geofísica, Universidad Politécnica de Cataluña, 2002.

[9] Benedetti, D. & Petrinni, V., Sulla vulnerabilitá sísmica di edifici in muratura. Proposte di un método di valutaziones. L’industria delle Construccioni, 149, pp. 66–78, 1984.

[10] Barbat, A.H., Pujades, L.G. & Lantada, N., Performance of buildings under earthquakes in Barcelona, Spain. Computer-Aided Civil and Infrastructure Engineering, 21(8), pp. 573–593, 2006.https://doi.org/10.1111/j.1467-8667.2006.00450.x

[11] Yépez, F., Metodología para la evaluación de la de la vulnerabilidad y riesgo sísmico de estructuras aplicando técnicas de simulación, PhD. Thesis, Barcelona, Dpto. Ingeni-ería del Terreno, Cartográfica y Geofísica, Universidad Politécnica de Cataluña, 1996.

[12] Lagomarsino, S. & Giovinazzi, S., Macroseismic and mechanical models for the vulner-ability and damage assessment of current buildings. Bulletin of Earthquake Engineering, 4, pp. 415–443, 2006.https://doi.org/10.1007/s10518-006-9024-z

[13] Lantada, N., Evaluación del riesgo sísmico mediante métodos avanzados y técnicas GIS. Aplicación a la ciudad de Barcelona, PhD. Thesis, Dpto. Ingeniería del Terreno, Cartográfica y Geofísica. Universidad Politécnica de Cataluña, Barcelona, 2007.

[14] Pujades, L.G., Barbat, A.H. & Lantada, N., Evaluación del riesgo sísmico en zonas urba-nas: desarrollo de escenarios. Revista internacional de ingeniería de estructuras, 12(1), pp. 1–28, 2007.

[15] Barbat, A.H., Pujades, L.G. & Lantada, N., Seismic damage evaluation in urban areas using the capacity spectrum method: application to Barcelona. Soil Dynamics and Earthquake Engineering, 28, pp. 851–865, 2008.https://doi.org/10.1016/j.soildyn.2007.10.006

[16] Lantada, N., Pujades, L.G. & Barbat, A.H., Vulnerability index and capacity spectrum based methods for urban seismic risk evaluation. A comparison. Natural Hazards, 51(3), pp. 501–524, 2009.https://doi.org/10.1007/s11069-007-9212-4

[17] Molina, S., Lang, D.H., Galiana-Merino, J.J., Jiménez-Delgado, A., Zaragoza-Martínez, A., et al., Seismic risk scenarios for the urban area of Almoradi (Southeast Spain). Presented at 8th International Workshop on Seismic Microzoning and Risk Reduction, Almería, Spain, 2009.

[18] Serrano-Lanzarote, B. & Temes-Córdovez, R., Vulnerabilidad y riesgo sísmico de los edificios residenciales estudiados dentro del Plan Especial de evaluación del riesgo sísmico en la Comunidad Valenciana. Informes de la construcción, 67(539), e104, pp. 1–11, 2015.https://doi.org/10.3989/ic.13.182

[19] Molina, S., Lang, D.H., & Lindholm, C.D., SELENA – An open-source tool for seismic risk and loss assessment using a logic tree computation procedure. Computers and Geo-sciences, 36(3), pp. 257–269, 2010.https://doi.org/10.1016/j.cageo.2009.07.006

[20] Abrahamson, N.A., Silva, W.J. & Kamai, R., Summary of the ASK14 ground motion relation for active crustal regions. Earthquake Spectra, 30(3), pp. 1025–1055, 2014. https://doi.org/10.1193/070913eqs198m

[21] Campbell, K.W. & Bozorgnia, Y., NGA-West 2 ground motion model for the average horizontal components of PGA, PGV, and 5% damped linear acceleration response spectra. Earthquake Spectra, 30(3), pp. 1087–1115, 2014.https://doi.org/10.1193/062913eqs175m

[22] Fajfar, P., Capacity spectrum method based on inelastic demand spectra. Earthquake Engineering & Structural Dynamics, 28(9), pp. 979–993, 1999.https://doi.org/10.1002/(sici)1096-9845(199909)28:9<979::aid-eqe850>3.0.co;2-1

[23] EERI Ad Hoc Committee on Seismic Performance, Expected seismic performance of buildings, Oakland, CA, 1994.

[24] Federal Emergency Management Agency FEMA, HAZUS99 Earthquake Loss Estimation Methodology, User Manual, Federal Emergency Management Agency, Washington, DC, United States, 1999

[25] García-Mayordomo, J., Insua-Arévalo, J.M., Martínez-Díaz, J.J., Jiménez-Díaz, A., Martín-Banda, R., Martín-Alfageme, S., Álvarez-Gómez, J.A., Rodríguez-Peces, M., Pérez-López, R., Rodríguez-Pascua, M.A., Masana, E., Perea, H., Martín-González, F., Giner-Robles, J., Nemser, E.S., Cabral, J. & QAFI compilers. The Quaternary Active Faults Database of Iberia (QAFI v.2.0). Journal of Iberian Geology, 38(1), pp. 285–302, 2012.https://doi.org/10.5209/rev_jige.2012.v38.n1.39219

[26] CEN, EN 1998-1, Eurocode 8—design of structures for earthquake resistance, part 1: general rules, seismic actions and rules for buildings. European Committee for Stan-dardization, Brussels, 2004.Mouroux, P. & Le Brun, B., Risk-UE Project: An Advanced Approach to Earthquake Risk Scenarios with Application to Different European Towns. Assessing and Manag-ing Earthquake Risk, ed. Oliveira, C.S., Roca, A. and Goula, X., Springer Netherlands, pp. 1–14, 2006.

[28] Ministerio de Obras Públicas, Transporte y Medio Ambiente, Real Decreto 2543/1994, de 29 de diciembre de 1994, por el que se aprueba la NCSE-94 Norma de Construc-ción Sismorresistente: parte General y de Edificación, Boletín Oficial del Estado, nº 33, pp. 3935–3980, España, 1995.

[29] Ministerio de Fomento, Real Decreto 997/2002, de 27 de septiembre de 2002, por el que se aprueba la NCSE-02 Norma de Construcción Sismorresistente: parte General y de Edificación, Boletín Oficial del Estado, nº 244, pp. 35898–35967, España, 2002.

[30] Presidencia del Gobierno, Decreto 2987/1968, de 20 de septiembre de 1968, por el que se aprueba la EH-68. Instrucción para el proyecto y la ejecución de obras de hormigón en masa o armado, Boletín Oficial del Estado, nº 290, pp. 17257–17291, España, 1968.

[31] Ministerio de Planificación del Desarrollo. (1974). Decreto 3209/1974, de 30 de agosto de 1974, por el que se aprueba la PDS-1-1974 Norma Sismorresistente: parte A. Boletín Oficial del Estado, nº 279, pp. 23585–23601, España, 1968.

[32] Federal Emergency Management Agency FEMA, HAZUS-MH MR4 Technical Manual. Washington, DC, 2003.

[33] Benito, B., Rivas, A., Pérez, M. Quirós, L.E., Ruiz, S., et al., Servicio de actualización del análisis de riesgo sísmico (RISMUR) en la región de Murcia (RISMUR II), Memoria Técnica, 2015.

[34] Pitilakis, K., Crowley, H. & Kaynia, A.M. (Eds), SYNER-G: Typology definition and fragility functions for physical elements at Seismic Risk: Buildings, Lifelines, Transpor-tation Networks and Critical Facilities, Springer, 1st edition, 2014.