New Ecological Composites Based on Natural Renewable Resources

New Ecological Composites Based on Natural Renewable Resources

Beata Strzemiecka | Łukasz Klapiszewski | Artur Jamrozik | Teofil Jesionowski | Adam Voelkel

Poznan University of Technology, Faculty of Chemical Technology, Poznań, Poland

Page: 
563-570
|
DOI: 
https://doi.org/10.2495/CMEM-V6-N3-563-570
Received: 
N/A
| |
Accepted: 
N/A
| | Citation

OPEN ACCESS

Abstract: 

The use of the lignin–corundum hybrid fillers for phenolic resins was showed. The very important aspect of the use of lignin for phenolic resin composites is the reduction of phenol emission. The emission of phenol from the phenolic resin-hybrid filler composites were studied by headspace analysis. The physicochemical properties of the new hybrid fillers as well as the thermomechanical properties of the composites with them were examined. The surface properties of hybrid fillers were studied by inverse gas chromatography (IGC). The chemical structure of the new fillers was tested by Fourier transform infrared spectroscopy (FTIR). The dynamic mechanical thermal analysis (DMTA) was used to test the thermomechanical properties of the model composites for the use of abrasive tool production.

Keywords: 

headspace, kraft lignin–corundum hybrids, phenol emission, phenolic resins, rheological properties, surface characteristic, thermomechanical properties

  References

[1] Comí, M., Lligadas, G., Ronda, J.C., Galià, M. & Cádiz, V., Renewable benzoxazine monomers from “lignin-like” naturally occurring phenolic derivatives. Journal of Polymer Science Part A: Polymer Chemistry, 51, pp. 4894–4903, 2013. https://doi.org/10.1002/pola.26918

[2] Tejado, A., Kortaberria, G., Pena, C., Labidi, J., Echeverría, J.M. & Mondragon, I., Lignins for phenol replacement in novolac-type phenolic formulations, part I: Lignophenolic resins synthesis and characterization. Journal of Applied Polymer Science, 106, pp. 2313–2319, 2007.https://doi.org/10.1002/app.26941

[3] Basso, M.C., Giovando, S., Pizzi, A., Celzard, A. & Fierro, V., Tannin/furanic foams without blowing agents  and  formaldehyde.  Industrial  Crops  and  Products,  49,  pp. 17–22, 2013.https://doi.org/10.1016/j.indcrop.2013.04.043

[4] Li, X., Pizzi, A., Lacoste, C., Fierro, V. & Celzard, A., Physical properties of tannin/ furanic resin foamed with different blowing agents. BioResources, 8, pp. 743–752, 2013.https://doi.org/10.15376/biores.8.1.743-752

[5] El Mansouri, N.-E. & Salvadó, J., Structural characterization of technical lignins for the production of adhesives: application to lignosulfonate, kraft, soda-anthraquinone, organosolv and ethanol process lignins. Industrial Crops and Products, 24, pp. 8–16, 2006.https://doi.org/10.1016/j.indcrop.2005.10.002

[6] Hu, L., Pan, H., Zhou, Y. & Zhang, M., Methods to improve lignin’s reactivity as a phenol substitute and as replacement for other phenolic compounds: a brief review. BioResources, 6(3), pp. 3515–3525, 2011.https://doi.org/10.15376/biores.6.3.3515-3525

[7] Strzemiecka, B., Klapiszewski, Ł., Jamrozik, A., Matykiewicz, D., Sterzyński, T., Voelkel, A. & Jesionowski, T., Physicochemical characterization of functional lignin– silica hybrid fillers for potential application in abrasive tools. Materials, 9, pp. 517–530, 2016.https://doi.org/10.3390/ma9070517

[8] Strzemiecka, B., Klapiszewski, Ł. Matykiewicz, D., Voelkel, A. & Jesionowski, T., Functional lignin–SiO2 hybrids as potential fillers for phenolic binders. Journal of Adhesion Science and Technology, 30, pp. 1031–1048, 2016. https://doi.org/10.1080/01694243.2015.1115602

[9] Yin, Q.F. & Di, M.W., Preparation and mechanical properties of lignin/epoxy resin composites. Advanced Materials Research, 482–484, pp. 1959–1962, 2012. https://doi.org/10.4028/www.scientific.net/amr.482-484.1959

[10] Guigo, N., Vincent, L., Mija, A., Naegele, H. & Sbirrazzuoli, N., Innovative green nanocomposites based on silicate clays/lignin/natural fibres. Composites Science and Technology, 69(11–12), pp. 1979–1984, 2009. https://doi.org/10.1016/j.compscitech.2009.05.001

[11] Brostow, W., Datashvili, T., Jiang, P. & Miller, H., Recycled HDPE reinforced with sol–gel silica modified wood sawdust. European Polymer Journal, 76, pp. 28–39, 2016. https://doi.org/10.1016/j.eurpolymj.2016.01.015

[12] Klapiszewski, Ł., Bula, K., Sobczak, M. & Jesionowski, T., Influence of processing conditions on the thermal stability and mechanical properties of PP/silica-lignin composites. International Journal of Polymer Science, 2016, pp. 1–12, 2016. https://doi.org/10.1155/2016/1627258

[13] Schultz, J., Lavielle, L. & Martin, C., Proprietes de surface des fibres de carbone dèterminèes par chromatographie gazeuse inverse. Journal de Chimie Physique et de Physico-Chimie Biologique, 84, pp. 231–237, 1987. https://doi.org/10.1051/jcp/1987840231

[14] Voelkel, A., Strzemiecka, B., Adamska, K., Milczewska, K. & Batko, K., Surface and bulk characteristics of polymers by means of inverse gas chromatography. In Polymeric Materials, ed. A. B. Nastasović & S. M. Jovanović, Transworld Research Network: Kerala, pp. 71–102, 2009.

[15] Voelkel, A., Physicochemical measurements (Inverse Gas Chromatography). In Gas Chromatography, ed. C.F. Poole, Elsevier: Amsterdam, pp. 477–494, 2012.

[16] Voelkel, A., Strzemiecka, B., Adamska, K. & Milczewska, K., Inverse gas chroma tography as a source of physicochemical data. Journal of Chromatography A, 1216, pp. 1551–1566, 2009.https://doi.org/10.1016/j.chroma.2008.10.096

[17] Papirer, E., Perrin, J.-M., Siffert, B. & Philipponneau, G., Surface characteristics of aluminas in relation with polymer adsorption. Journal of Colloid and Interface Science, 144, pp. 263–270, 1991.https://doi.org/10.1016/0021-9797(91)90257-9

[18] Chehimi, M.M., Abel, M.-L., Watts, J.F. & Digby, R.P., Surface chemical and thermodynamic properties of -glycidoxypropyltrimethoxysilane-treated alumina: an XPS and IGC study. Journal of Materials Chemistry, 11(2), pp. 533–543, 2001. https://doi.org/10.1039/b005227m

[19] Guigo, N., Mija, A., Vincent, L. &  Sbirrazzuoli,  N.,  Eco-friendly  composite  res ins based on renewable biomass resources: Polyfurfuryl alcohol/lignin thermosets. European Polymer Journal, 46, pp. 1016–1023, 2010. https://doi.org/10.1016/j.eurpolymj.2010.02.010