Optical and Electrochemical Activity of Gold Flower-Shape Crystals

Optical and Electrochemical Activity of Gold Flower-Shape Crystals

Pierre Bauer Karine Mougin Vincent Vignal Halina Krawiec Mohammad Rajab Arnaud Buch Pierre Ponthiaux'd Delphine Faye 

Institut de Science des Matériaux de Mulhouse, UMR 7361 CNRS-Université de Haute Alsace, 15 Rue Jean Starcky, BP 2488, Mulhouse Cedex, 68057, France

Laboratoire Interdisciplinaire Carnot de Bourgogne, UMR 6303 CNRS-Université de Bourgogne, 9 avenue Alain Savary, BP 47870, Dijon Cedex, 21078, France

AGH-University of Science and Technology, Faculty of Foundry Engineering, Reymonta 23 street, Krakow, 30-059, Poland

Centre Nationale d'Etudes Spatiales, 18 Avenue Édouard Belin, Toulouse, 31400, France

Centre Nationale d'Etudes Spatiales, 18 Avenue Édouard Belin, 31400 Toulouse, France

Page: 
43-50
|
DOI: 
https://doi.org/10.3166/acsm.40.43-50
Received: 
1 October 2015
|
Accepted: 
7 January 2016
|
Published: 
11 May 2016
| Citation

OPEN ACCESS

Abstract: 

A novel approach for a controlled growth of pattern-directed organization of Au flower shape crystals (NFS) onto rigid substrate has been proposed to achieve large-scale functional materials. This process is based on the combination of soft nanoporous template and a multistage aqueous chemical method. First, a hexagonal array of gold nanoparticles was prepared using a nanoporous thin membrane by a seed-mediated growth colloidal process. The size and morphology of the Au NFs were then controlled by a site selective heterogeneous nucleation and growth onto the Au precursors. The growth mechanism of the template-directed synthesis of Au crystals arrays was investigated. The optical and electrochemical properties of Au NFs were discussed in relation with their morphology and organization. Results show that the nature, the size, the interparticle distance and their density strongly affect the intensity of the optical and electrochemical signals. Finally, this easy and multistep approach is particularly attractive due to its environmentally gentle processing conditions and represents an open pathway to several large-scale nanomaterials fabrication.

1. Introduction
2. Experimental
3. Results
4. Conclusions
  References

[1] F. Zhang. G.B. Braun, Y.F. Shi, Y.C. Zhang. X.H. Sun, N.O. Reich, D.Y. Zhao, G. Stucky, Joumal of American Chemical Society 132(2010) 2850-2851.

[2] G-C. Yi, C. Wang. W.I. Park, Semiconductor Science and Technology 20(2005) S22-S34.

[3] Z.Q. Tian, B. Ren, J.F. Li, Z.L. Yang. Chemical Communication 34(2007) 3514-3534. [4] $\quad$ S. Park, S. Kim, W.L. Lee, K-K. Kim, C. Lee, Journal of Nanotechnology 5 (2014) 1836-1841.

[5] H. Chen, X. Kou, Z. Yang. W. Ni, J. Wang, Langmuir 24 ( 10 ) (2008) $5233-5237$.

[6] X.Y. Dong. X.H. Ji, H.L. Wu, L.L. Zhao, J. Li, W.S. Yang, J. of Phys. Chem. C 113 (2009) $6573-6576$

[7] A. Stojanovic, S. Oliveira, M. Fisher, S. Sceger, Chemistry of Materials 25 (2013) 2787-2792.

[8] S.H. Chen, D.L. Carroll, Journal of Physical Chemistry B 108 (18) (2004) 5500-5506.

[9] W.X. Niu, Z.Y. Li, L.H. Shi, X.Q. Liu, H.J. Li, S. Han, J. Chen, G.B. Xu, Crystal Growth and Design 8 (2008) 4440-4444.

[10] N.R. Jana, L. Gearheart, C.J. Murphy, Chemical Communication 7 (2001) 617-618.

[11] B.I. Kharisov, Recent Patents on Nanotechnologiy $2(3)(2008) 190-200$.

[12] W. Ye, J. Yan, Q. Ye, F. Zhou, Journal of Physical Chemistry C 114 (37) (2010) 15617-15624.

[13] L. Wang, G. Wei, C. Guo, L. Sun, Y. Sun, Y. Song, T. Yang, $Z$. Li, Colloids and Surfaces A $312(2008) 148-153$

[14] T. Huang, F. Meng, L. Qi, Langmuir 26 (10) (2010) 7582-7589.

[15] M. Pan, S. Xing, T. Sun, W. Zhou, M. sindoro, H.H. Teo, Q. Yan, H. Chen, Chemical Communication $46(38)(2010) 7112-7114$

[16] X-L. Tang, P. Jiang, G-L. Ge, M. Tsuij, S-S. Xie, Y-J. Guo, Langmuir 24 (5) (2008) 1763"1768.

[17] J. Zhang, L. Meng, D. Zhao, Z. Fei, Q. Lu, P.J. Dyson, Langmuir 24 (6) ( 2008 ) 2699-2704.

[18] $z .$ Wang, M. Bharathi, R. Hariharaputran, H. Xing, L. Tang, J. Li, Y-W. Zhang, Y. Lu, ACS nana7 ( 2013 ) $278-2265$

[19] Y. Liu, K.B. Male, P. Bouvrette, J.H.T. Luong, Chemistry of Materials 15(22)(2003) 4172 -4180.

[20] J-L. Lee, K. Kamada, N. Enomoto, J. Hojo, Chemistry Letters 36 (2007) 728-729.

[21] D. Huang, X. Bai, L. Zheng, Journal of Physical Chemistry C 115 (30) (2011) 14641-14647.

[24] J.P Spatz, S. Mossner, C. Hartmann, M. Möller, Langmuir 16 (2) (2000) 407-415.

[25] C-H. Yu, Y-H Chuang, S-H. Tung, Polymer 52 (18) (2011) 3994-4000.

[28] X. Zhang, Q. Zhou, W. Wang, L. Shen, Z. Li, Z. Zhang, Materials Research Bulletin 47 (3) (2012) 921-924.

[29] L. Jiang, W. Wang, H. Fuchs, L. Chi, Small $5(24)(2009) 2819-2822 .$

[30] J. Huang, X. Han, D. Wang, D. Liu, T. You, ACS Applied Materials and Interfaces 5 (18) (2013) 9148-9154.

[31] Q. Lu, J. Zhang, X. Liu, Y. Wu, R. Yuan, S. Chen, Royal Society of Chemistry 139 (2014) $6556-6562$

[32] S.K. Youn, N. Ramgir, C. Wang, K. Subannajui, V. Cimalla, M. Zacharias, Journal of Physical Chemistry $\mathrm{C} 114(22)(2010) 10092-10100$

[33] T.H. Kim, J. Huh, J. Hwang, H-C. Kim, S-H. Kim, B-H. Sohn, C. Park, Macromolecules 42 $(2009) 6688-6697$

[34] L. Zhao, X. Ji, X. Sun, J. Li, W. Yang, X. Peng, Journal of Physical Chemistry C 113 (38) (2009) 16645-16651.

[35] J. Jiu, K. Murai, D. Kim, K. Kim, K. Suganuma, Preparation of Ag nanorods with high yield by polyol process, Materials Chemistry and Physics 114 (2009) 333-338.