Copper oxide-water nanofluid flow within an annulus shaped cavity: A numerical study on natural convective heat transfer

Copper oxide-water nanofluid flow within an annulus shaped cavity: A numerical study on natural convective heat transfer

M. J. Uddin  M. A. Halim  M. Mohiuddin  Shalauddin 

Faculty of Science and Information Technology, Daffodil International University, Dhaka, angladesh

Corresponding Author Email: 
jashim.fluidm@gmail.com
Page: 
239-260
|
DOI: 
https://doi.org/10.3166/ACSM.41.239-260
Received: 
| |
Accepted: 
| | Citation

OPEN ACCESS

Abstract: 

The purpose of the study is to investigate the heat transfer for copper oxide-water nanofluid flow inside a concentrical annulus between a colder square and het up elliptical cylinder using nonhomogeneous dynamic model numerically. The uniform temperature is applied for the elliptic cylinder and square wall. An unvarying magnetic field is enforced within an enclosure. The momentum, energy and concentration equations along with the continuity equations of nanofluids are strongly coupled and nonlinear and solved using the Galerkin finite element method. The flow, thermal and concentration fields have been displayed to recognize the heat transfer for copper oxide-water nanofluid. The nature of the heat transfer is justified for pertinent parameters of the problem. The results show that the flow, thermal field, and concentration field are strongly controlled by the applied magnetic field. The heat transfer increases significantly for the increase of nanoparticle volume fraction, thermal Rayleigh number and slightly for the magnetic field inclination angle whereas it decreases remarkably for an increase of the nanoparticle diameter and the magnetic field parameter. The similar patterns but opposite effects of heat transfer distribution occur for the increment of the magnetic field and the buoyancy force parameter

Keywords: 

 finite element method, nanofluid, nanoparticles, solar collector, heat transfer

1. Introduction
2. Problem formulations
3. Computational procedures
4. Results and discussions
5. Conclusion
Nomenclature
  References

Bhagoria J. L., Saini J. S., Solanki S. C. (2002). Heat transfer coefficient and friction factor correlations for rectangular solar air heater duct having a transverse wedge-shaped rib roughness on the absorber plate. Renewable Energy, Vol. 25, No. 3, pp. 341-369. https://doi.org/10.1016/s0960-1481(01)00057-x

Buongiorno J. (2006). Convective transport in nanofluids. Journal of Heat Transfer, Vol. 128, No. 3, pp. 240-250. https://doi.org/10.1115/1.2150834

Codina R. (1998). Comparison of some finite element methods for solving the diffusion-convection-reaction equation. Computer Methods in Applied Mechanics and Engineering, Vol. 156, No. 1-4, pp. 185-210. https://doi.org/10.1016/S0045-7825(97)00206-5

De Vahl Davis G. (1983). Natural convection of air in a square cavity: A benchmark numerical solution. International Journal for Numerical Methods in Fluids, Vol. 3, No. 3, pp. 249-264. https://doi.org/10.1002/fld.1650030305

Ding Y., Wen D. (2005). Particle migration in a flow of nanoparticle suspensions. Powder Technology, Vol. 149, No. 2-3, pp. 84-92. https://doi.org/10.1016/j.powtec.2004.11.012

Ghasemi B., Aminossadati S. M. (2010). Brownian motion of nanoparticles in a triangular enclosure with natural convection. International Journal of Thermal Sciences, Vol. 49, No. 6, pp. 931-940. https://doi.org/10.1016/j.ijthermalsci.2009.12.017

Ho C. J., Liu W. K., Chang Y. S., Lin C. C. (2010). Natural convection heat transfer of alumina-water nanofluid in vertical square enclosures: an experimental study. International Journal of Thermal Sciences, Vol. 49, No. 8, pp. 1345-1353. https://doi.org/10.1016/j.ijthermalsci.2010.02.013

Khanafer K., Vafai K., Lightstone M. (2003). Buoyancy-driven heat transfer enhancement in a two-dimensional enclosure utilizing nanofluids. International Journal of Heat and Mass Transfer, Vol. 46, No. 19, pp. 3639-3653. https://doi.org/10.1016/s0017-9310(03)00156-x

Lai F. H., Yang Y. T. (2011). Lattice Boltzmann simulation of natural convection heat transfer of Al2O3/water nanofluids in a square enclosure. International Journal of Thermal Sciences, Vol. 50, No. 10, pp. 1930-1941. https://doi.org/10.1016/j.ijthermalsci.2011.04.015

Maxwell J. A. (1873). A treatise on electricity and magnetism. Clarendon Press, Oxford.

Omri A., Orfi J., Nasrallah S. B. (2005). Natural convection effects in solar stills. Desalination, Vol. 183, No. 1-3, pp. 173-178. Https://doi.org/10.1016/j.desal.2005.04.025

Saghir M. Z., Ahadi A., Mohamad A., Srinivasan S. (2016). Water aluminum oxide nanofluid benchmark model. International Journal of Thermal Sciences, Vol. 109, pp. 148-158. https://doi.org/10.1016/j.ijthermalsci.2016.06.002

Sheikholeslami M., Abelman S. (2015). Two-phase simulation of nanofluid flow and heat transfer in an annulus in the presence of an axial magnetic field. IEEE Transactions on Nanotechnology, Vol. 14, No. 3, pp. 561-569. https://doi.org/10.1109/TNANO.2015.2416318

Sheikholeslami M., Gorji-Bandpy M., Ganji D. D. (2013). Numerical investigation of MHD effects on Al2O3-water nanofluid flow and heat transfer in a semi-annulus enclosure using LBM. Energy, Vol. 60, pp. 501-510. https://doi.org/10.1016/j.energy.2013.07.070

Sheremet M. A., Pop I. (2015). Mixed convection in a lid-driven square cavity filled by a nanofluid: Buongiorno’s mathematical model. Applied Mathematics and Computation, Vol. 266, pp. 792-808.

Siavashi M., Bahrami H. R., Saffari H. (2015). Numerical investigation of flow characteristics, heat transfer and entropy generation of nanofluid flow inside an annular pipe partially or completely filled with porous media using two-phase mixture model. Energy, Vol. 93, pp. 2451-2466.

Soleimani S., Sheikholeslami M., Ganji D. D., Gorji-Bandpay M. (2012). Natural convection heat transfer in a nanofluid filled semi-annulus enclosure. International Communications in Heat and Mass Transfer, Vol. 39, No. 4, pp. 565-574. https://doi.org/10.1016/j.icheatmasstransfer.2012.01.016

Tiwari R. K., Das M. K. (2007). Heat transfer augmentation in a two-sided lid-driven differentially heated square cavity utilizing nanofluids. International Journal of Heat and Mass Transfer, Vol. 50, No. 9-10, pp. 2002-2018. Https://doi.org/10.1016/j.ijheatmasstransfer.2006.09.034

Tzeng S. C., Liou J. H., Jou R. Y. (2005). Numerical simulation-aided parametric analysis of natural convection in a roof of triangular enclosures. Heat Transfer Engineering, Vol. 26, No. 8, pp. 69-79. Https://doi.org/10.1080/01457630591003899

Uddin M. J., Al Kalbani K. S., Rahman M. M., Alam M. S., Al-Salti N., Eltayeb I. (2016a). Fundamentals of nanofluids: Evolution, applications and new theory. International Journal of Biomathematics and Systems Biology, Vol. 2, No. 1, pp. 1-32.

Uddin M. J., Alam M. S., Al-Salti N., Rahman M. M. (2016b). Investigations of Natural convection heat transfer in nanofluids filled horizontal semicircular-annulus using nonhomogeneous dynamic model. Am J Heat Mass Transf, Vol. 3, No. 6, pp. 425-452.

Wen D., Ding Y. (2004). Experimental investigation into convective heat transfer of nanofluids at the entrance region under laminar flow conditions. International Journal of Heat and Mass Transfer, Vol. 47, No. 24, pp. 5181-5188. Https://doi.org/10.1016/j.ijheatmasstransfer.2004.07.012

Xu X., Sun G., Yu Z., Hu Y., Fan L., Cen K. (2009). Numerical investigation of laminar natural convective heat transfer from a horizontal triangular cylinder to its concentric cylindrical enclosure. International Journal of Heat and Mass Transfer, Vol. 52, No. 13-14, pp. 3176-3186. Https://doi.org/10.1016/j.ijheatmasstransfer.2009.01.026

Xuan Y., Li Q. (2003). Investigation of convective heat transfer and flow features of nanofluids. Journal of Heat Transfer, Vol. 125, No. 1, pp. 151-155. Https://doi.org/10.1115/1.1532008

Xuan Y., Roetzel W. (2000). Conceptions for heat transfer correlation of nanofluids. International Journal of Heat and Mass Transfer, Vol. 43, No. 19, pp. 3701-3707. Https://doi.org/10.1016/s0017-9310(99)00369-5

Zienkiewicz O. C., Taylor R. L., Nithiarasu P. (2005). The Finite Element Method for Fluid Dynamics. 6th edition, Elsevier