4DGVF: Segmentation Variationnelle pour Images 3D Multicomposantes

4DGVF: Segmentation Variationnelle pour Images 3D Multicomposantes

Vincent Jaouen Paulo González  Simon Stute  Denis Guilloteau  Sylvie Chalon  Irène Buvat  Clovis Tauber 

UMR Université de Tours, INSERM U930 « Imagerie et cerveau»

bd Tonnelé 37044, Tours Cedex, France

CEA - Service Hospitalier Frédéric Joliot, Orsay, France

Page: 
9-38
|
DOI: 
https://doi.org/10.3166/TS.31.9-38
Received: 
27 September 2013
| |
Accepted: 
14 April 2014
| | Citation

OPEN ACCESS

Abstract: 

In this paper, we generalize the gradient vector flow field to vector-valued images. We base our method on the definition of a structure tensor that is calculated according to a blind estimation of contrast in the different channels and that exploits the whole spatiospectral information, hence reducing sensitivity to noise and better defining orientations of the force field. The resulting field takes profit of both magnitude and direction of the vectorvalued gradient. Applied to biological volume delineation in 3D dynamic Positron Emission Tomography (PET) imaging, we validate our method on realistic Monte Carlo simulations of numerical phantoms and present results on real dynamic PET data. Performances observed on such images confirm the potential of the proposed active surface approach for vector-valued data.

Extended Abstract

Deformable models like snakes have become popular in the field of image segmentation over the past 25 years. By iteratively deforming an evolving object superimposed onto the image domain, such techniques enable to accurately delineate regions of interest and to guarantee the smoothness of the resulting contours. There are relatively few edge-based deformable models dedicated to vector-valued images in which the additional information provided by the extra dimension available is exploited (Sapiro, 1996; Xie, Mirmehdi, 2004; Yang et al., 2005). In these methods, the gradient magnitude is used to characterize vector edges and is derived from the eigenvalues of a structure tensor that embeds the local orientations of the image features. While improving single-channel approaches, such methods only make use of the scalar information embedded in the structure tensor. Moreover, the influence of each channel should be weighted to favor the ones bearing the most relevant information.

In this paper, we design a new gradient vector flow scheme tailored for segmentation of vector-valued images. In our approach, edge information in each channel is weighted according to its relevance as calculated from a blind estimator of contrast, favouring channels in which the features of interest can be better detected. The proposed weighting scheme makes the method well adapted to modalities in which the different channels are affected by varying noise levels. From local structure analysis, we obtain not only scalar, but also vectorial information for identifying and propagating directions of the vector gradient. By performing nonlinear diffusion of both directions and magnitudes of the vector gradient, we produce a robust external force field able to drive deformable models toward vector edges.

We validate the proposed method quantitatively over four state of the art approaches of the literature on synthetic images and realistic simulations of dynamic PET images. Results suggest that incorporating directional information contained in the structure tensor in the diffusion scheme can improve segmentation quality over approaches that consider vector edges in a scalar way. Applied to a real dynamic PET image of a rat brain, our approach accurately located an injured functional region, illustrating the potential of the proposed method for pre-clinical or clinical applications.

RÉSUMÉ

Danscetarticle,nousgénéralisonsleflotdevecteursgradients(GVF)pourlesimages à valeurs vectorielles. Nous basons notre méthode sur la définition d’un tenseur de structure multicomposante pondéré par une estimation aveugle du contraste, exploitant l’intégralité de l’information spatio-spectrale pour réduire la sensibilité au bruit et affiner les orientations du champ de forces dans l’image. Le champ de forces ainsi produit tire profit des directions et amplitudes du gradient déduites de l’analyse de la structure locale. Appliquée à la segmentation de volumes biologiques en imagerie par tomographie d’émission de positrons (TEP) 3D dynamique, nous validons notre méthode sur des simulations Monte Carlo réalistes d’images TEP de fantômes numériques et présentons des résultats sur des images TEP dynamiques réelles. Les performances obtenues sur ce type d’images confirment l’intérêt de l’approche multicomposante de surfaces actives proposée. 

Keywords: 

3D segmentation, deformable models, dynamic PET

MOTS-CLÉS 

segmentation 3D, modèles déformables, TEP dynamique.

1. Introduction
2. Méthodes Classiques
3. Méthode
4. Protocole de Validation
5. Résultats
6. Conclusion
  References

Andel H. G. van, Venema H., Majoie C., Den Heeten G., Grimbergen C., Streekstra G. (2009). Intracranial ct angiography obtained from a cerebral ct perfusion examination. Medical physics, vol. 36, no 4, p. 1074–1085.

Barbosa D., Dietenbeck T., Schaerer J., D’hooge J., Friboulet D., Bernard O. (2012). B-spline explicit active surfaces: An efficient framework for real-time 3-d region-based segmentation. Image Processing, IEEE Transactions on, vol. 21, no 1, p. 241–251. 

Blomgren P., Chan T. (1998). Color tv: total variation methods for restoration of vector-valued images. Image Processing, IEEE Transactions on, vol. 7, no 3, p. 304–309. 

Brox T. (2005). From pixels to regions: partial differential equations in image analysis. Thèse de doctorat non publiée, Faculty of Mathematics and Computer Science, Saarland University, Germany. Canny J. (1986). A computational approach to edge detection. Pattern Analysis and Machine Intelligence, IEEE Transactions on, no 6, p. 679–698. 

Caselles V., Kimmel R., Sapiro G. (1997). Geodesic active contours. International journal of computer vision, vol. 22, no 1, p. 61–79. 

ChanT.,SandbergB.,VeseL. (2000). Activecontourswithoutedgesforvector-valuedimages. Journal of Visual Communication and Image Representation, vol. 11, no 2, p. 130–141. 

ChanT.,VeseL. (2001). Activecontourswithoutedges. ImageProcessing,IEEETransactions on, vol. 10, no 2, p. 266–277. Cheng-Liao J., Qi J. (2010). Segmentation of mouse dynamic pet images using a multiphase level set method. Physics in medicine and biology, vol. 55, no 21, p. 6549. 

Cohen L., Cohen I. (1993). Finite-element methods for active contour models and balloons for 2-d and 3-d images. Pattern Analysis and Machine Intelligence, IEEE Transactions on, vol. 15, no 11, p. 1131–1147. 

Coxson P., Huesman R., Borland L. (1997). Consequences of using a simplified kinetic model for dynamic pet data. Journal of nuclear medicine: official publication, Society of Nuclear Medicine, vol. 38, no 4, p. 660–667. 

Cumani A. (1991). Edge detection in multispectral images. CVGIP: Graphical models and image processing, vol. 53, no 1, p. 40–51. 

Deriche R. (1987). Using canny’s criteria to derive a recursively implemented optimal edge detector. International journal of computer vision, vol. 1, no 2, p. 167–187. 

Di Zenzo S. (1986). A note on the gradient of a multi-image. Computer Vision, Graphics, and Image Processing, vol. 33, no 1, p. 116–125. 

Ghosh P., Bertelli L., Sumengen B., Manjunath B. (2010). A nonconservative flow field for robust variational image segmentation. Image Processing, IEEE Transactions on, vol. 19, no 2, p. 478–490. GoldenbergR.,KimmelR.,RivlinE.,RudzskyM. (2001). Fastgeodesicactivecontours. Image Processing, IEEE Transactions on, vol. 10, no 10, p. 1467–1475. 

Han X., Xu C., Prince J. (2003). A topology preserving level set method for geometric deformable models. Pattern Analysis and Machine Intelligence, IEEE Transactions on, vol. 25, no 6, p. 755–768. Jaccard P. (1901). Distribution de la flore alpine dans le bassin des Dranses et dans quelques régions voisines. Bulletin de la Société Vaudoise des Sciences Naturelles, vol. 37, p. 241– 272.

Jan S., Benoit D., Becheva E., Carlier T., Cassol F., Descourt P. et al. (2011). Gate v6: a major enhancement of the gate simulation platform enabling modelling of ct and radiotherapy. Physics in medicine and biology, vol. 56, no 4, p. 881. 

Jan S., Santin G., Strul D., Staelens S., Assie K., Autret D. et al. (2004). Gate: a simulation toolkit for pet and spect. Physics in medicine and biology, vol. 49, no 19, p. 4543. KamasakM.,BoumanC.,MorrisE.,SauerK. (2005). Directreconstructionofkineticparameter images from dynamic pet data. Medical Imaging, IEEE Transactions on, vol. 24, no 5, p. 636–650. 

Kass M., Witkin A., Terzopoulos D. (1988). Snakes: Active contour models. International journal of computer vision, vol. 1, no 4, p. 321–331. 

Kichenassamy S., Kumar A., Olver P., Tannenbaum A., Yezzi A. (1995). Gradient flows and geometric active contour models. In Computer vision, 1995. proceedings., fifth international conference on, p. 810–815. 

Lankton S., Tannenbaum A. (2008). Localizing region-based active contours. Image Processing, IEEE Transactions on, vol. 17, no 11, p. 2029–2039. 

Lee H., Cok D. (1991). Detecting boundaries in a vector field. Signal Processing, IEEE Transactions on, vol. 39, no 5, p. 1181–1194. 

Lee T., Mumford D., Yuille A. (1992). Texture segmentation by minimizing vector-valued energy functionals: The coupled-membrane model. In Computer vision eccv’92, p. 165– 173. 

Li B., Acton S. (2007). Active contour external force using vector field convolution for image segmentation. Image Processing, IEEE Transactions on, vol. 16, no 8, p. 2096–2106. 

Li B., Acton S. (2008). Automatic active model initialization via poisson inverse gradient. Image Processing, IEEE Transactions on, vol. 17, no 8, p. 1406–1420. 

Lorensen W., Cline H. (1987). Marching cubes: A high resolution 3d surface construction algorithm. In Acm siggraph computer graphics, vol. 21, p. 163–169. 

McInerney T., Terzopoulos D. (1996). Deformable models in medical image analysis. In Mathematical methods in biomedical image analysis, 1996., proceedings of the workshop on, p. 171–180. Montagnat J., Delingette H. (2005). 4d deformable models with temporal constraints: application to 4d cardiac image segmentation. Medical Image Analysis, vol. 9, no 1, p. 87–100. 

Paragios N., Deriche R. (2002). Geodesic active regions: A new framework to deal with frame partitionproblemsincomputervision. JournalofVisualCommunicationandImageRepresentation, vol. 13, no 1, p. 249–268. 

Piella G. (2009). Image fusion for enhanced visualization: A variational approach. International Journal of Computer Vision, vol. 83, no 1, p. 1–11. 

Politte D. G., Snyder D. (1991). Corrections for accidental coincidences and attenuation in maximum-likelihood image reconstruction for positron-emission tomography. Medical Imaging, IEEE Transactions on, vol. 10, no 1, p. 82–89. 

Rousson M., Deriche R. (2002). A variational framework for active and adaptative segmentationofvectorvaluedimages. InMotionandvideocomputing,2002.proceedings.workshop on, p. 56–61.

RoussonM.,ParagiosN. (2002). Shapepriorsforlevelsetrepresentations. InComputervision eccv 2002, p. 78–92. 

Springer. SapiroG. (1996). Vector(self)snakes:Ageometricframeworkforcolor,texture,andmultiscale imagesegmentation. InImageprocessing,1996.proceedings.,internationalconferenceon, vol. 1, p. 817–820. 

Sapiro G., Ringach D. (1996). Anisotropic diffusion of multivalued images with applications to color filtering. Image Processing, IEEE Transactions on, vol. 5, no 11, p. 1582–1586. 

Sum K., Cheung P. (2007). Boundary vector field for parametric active contours. Pattern Recognition, vol. 40, no 6, p. 1635–1645. 

Tauber C., Batatia H., Ayache A. (2010). Quasi-automatic initialization for parametric active contours. Pattern Recognition Letters, vol. 31, no 1, p. 83–90. 

Taubin G. (1995). A signal processing approach to fair surface design. In Proceedings of the 22nd annual conference on computer graphics and interactive techniques, p. 351–358. ThürrnerG.,WüthrichC.A. (1998). Computingvertexnormalsfrompolygonalfacets. Journal of Graphics Tools, vol. 3, no 1, p. 43–46. 

TschumperléD.,DericheR. (2005). Vector-valued imageregularizationwithpdes:Acommon framework for different applications. Pattern Analysis and Machine Intelligence, IEEE Transactions on, vol. 27, no 4, p. 506–517. 

Weickert J. (1999a). Coherence-enhancing diffusion filtering. International Journal of Computer Vision, vol. 31, no 2-3, p. 111–127. Weickert J. (1999b). Coherence-enhancing diffusion of colour images. Image and Vision Computing, vol. 17, no 3, p. 201–212. 

Xie X., Mirmehdi M. (2004). Rags: Region-aided geometric snake. Image Processing, IEEE Transactions on, vol. 13, no 5, p. 640–652. 

Xie X., Mirmehdi M. (2008). Mac: Magnetostatic active contour model. Pattern Analysis and Machine Intelligence, IEEE Transactions on, vol. 30, no 4, p. 632–646. 

Xu C., Prince J. (1998a). Generalized gradient vector flow external forces for active contours. Signal Processing, vol. 71, no 2, p. 131–139. 

Xu C., Prince J. (1998b). Snakes, shapes, and gradient vector flow. Image Processing, IEEE Transactions on, vol. 7, no 3, p. 359–369. 

YangL.,MeerP.,ForanD. (2005). Unsupervisedsegmentationbasedonrobustestimationand color active contour models. Information Technology in Biomedicine, IEEE Transactions on, vol. 9, no 3, p. 475–486. 

Zeng D., Zhou Z., Xie S. (2012). Image segmentation based on the poincaré map method. Image Processing, IEEE Transactions on, vol. 21, no 3, p. 946–957. 

Zubal G., Harrell C., Smith E., Rattner Z., Gindi G., Hoffer P. et al. (1994). Computerized three-dimensionalsegmentedhumananatomy. Medical Physics-New York-Institute of Physics, vol. 21, no 2, p. 299–302.