Study of the impact of the humidity on the tribological holding of sliding contact materials

Study of the impact of the humidity on the tribological holding of sliding contact materials

Kaid-Ameur Djilali

Laboratory of Industrial engineering and sustainable development (LGIDD), University Center of Relizane, Algeria

Corresponding Author Email: 
djilalikaidameur@yahoo.fr
Page: 
249-260
|
DOI: 
https://doi.org/10.3166/rcma.2017.00021
Received: 
| |
Accepted: 
| | Citation

ACCESS

Abstract: 

Understanding the physical mechanisms resulting from dry sliding contact disc/pads, require an experimental simulation represented by a disc and a pin, under the influence of a number of braking parameters, such as the nature of the disc material and pin, the load applied by the pin in, and the rotational speed of the disc. On the other hand to apprehend the evolution of the tribological behavior of braking materials, it is a critic to understand the answer of the brake disc materials in the environments especially in the littoral environment where humidity and salinity rate are very high. However, the corrosion of the contact emerges because these environments have a large effect on the friction coefficient and the wear of the brake discs materials.

Keywords: 

humidity, composite materials, grey font, steel, aluminum, wear, tribology

1. Introduction
2. Matériaux de disques de frein
3. Matériaux des garnitures ou pions
4. Influence de l’humidité
5. Comparaison entre les effets de l’humidité
6. Conclusion
  References

Berthelot J.-M. (1992). Matériaux composites : comportement mécanique et analyse des structures. Masson, Paris.

Carneiro E.A., Winocq L., Berthaud J. (1992). Disc brakes of trucks: a technical innovation for heavy vehicles. Warrendale SAE.

Dufrenoy P. (1995). Étude du comportement mécanique des disques de frein vis avis des risques de défaillances. Thèse de doctorat, Université de Lille, France.

Eriksson M., Jacobson S. (2017). Tribological surfaces of organic brakepads. Tribology.

Jimbo Y.et al. (1990). Development of high thermal conductivity castiron for brake discrotor. Warrendale SAE, p. 22-28.

Kim S.S., Lee S.H.Lee S.M. (1995). Thermomechanical wear mechanism of friction brake. Proceedings of the international tribology conference. Tokohama, p. 1567-1572.

Klose H. (2012). LeichtbauwerkstoffeModul, WestsächsischeHochschule Zwickau. Sommersemester.

Rosso M. (2006). Ceramic and metal matrix composites: Routes and properties. Journal of Materials Processing Technology, vol. 175, p. 364-375.

Shabaita K. (2014). Characterizing corrosive wear of chemically reactive surface layers on metal and ceramic brake disc materials. Master thesis, Zwickau, Germany.EITTMCG 259