The Preparation Approaches of Polymer/graphene Nanocomposites and their Appilcation Research Progress as Electrochemical Sensors

The Preparation Approaches of Polymer/graphene Nanocomposites and their Appilcation Research Progress as Electrochemical Sensors

Weifeng Chen Shaona Chen Weimin Hu Dejiang Li* Zhongxu Dai*

Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials, College of Materials and Chemical Engineering, China Three Gorges University,Yichang City,Hubei Province, People's Republic of China

Corresponding Author Email: 
chenshaona@ctgu.edu.cn, daizx@ctgu.edu.cn
Page: 
205-221
|
DOI: 
https://doi.org/10.14447/jnmes.v20i4.356
Received: 
4 July 2017
| |
Accepted: 
5 September 2017
| | Citation
Abstract: 

Graphene, a two-dimensional sheet of sp2-hybridized carbon atoms packed into a honeycomb lattice, can be combined with various polymers through different methods and techniques. Polymer/graphene nanocomposites are expected to not only preserve the fa-vorable properties of graphene and polymers, but also greatly enhance the intrinsic properties due to the synergetic effect between them. In this review, the preparation approaches of graphene/polymer nanocomposites, including melt blending, solution blending, in-situ polymeri-zation and in-situ synthesis, were presented comprehensively in order to study the relationship between these approaches and the final characteristics and performances. Each approach had different influences on the final properties of the nanocomposites. The advantages and disadvantages of the preparation methods were discussed respectively. Additionally, the application researches of the polymer/graphene nanocomposites as electrochemical sensors, were introduced in detail. With regard to some important or novel sensors, the mechanisms were proposed for reference. Finally, conclusions were given and the issues waiting to be settled for further development were pointed out. The current review demonstrates that polymer/graphene nanocomposites exhibit superior electrochemical performances and will be applied practically in the field of sensor devices.

Keywords: 

graphene, polymer, nanocomposites, performance, electrochemical sensors

1. Introduction
2. Approaches of Preparation
3. Application of the Nanocomposites As Electrochemical Sensors
4. Conclusions
5. Acknowledgements
  References

[1] J.N. Coleman, U. Khan, Y.K. Gunko, Adv. Mater., 18, 689 (2006).

[2] E.T. Thostenson, C. Li, T.W. Chou, Compos. Sci. Technol., 65, 491 (2005).

[3] D.Y. Cai, J. Mater. Chem., 20, 7906 (2010).

[4] H. Kim, A.A. Abdala, C.W. Macosko, Macromolecules, 43, 6515 (2010).

[5] T. Kuillaa, S. Bhadrab, D. Yao, et al., Prog. Polym. Sci., 35, 1350 (2010).

[6] J.R. Potts, D.R. Dreyer, C.W. Bielawski, et al., Polymer, 52,5 (2011).

[7] X.D. Xia, Y. Wang, Z. Zhong, et al., Carbon, 111, 221 (2017).

[8] Y.L. Lia, S.J. Wang, Q. Wang, Carbon, 111, 538 (2017).

[9] M.T. Song, Compos. Struct., 159, 579 (2017).

[10]C. Feng, S. Kitipornchai, J. Yang, Compos. Part B-Eng., 110, 132 (2017).

[11]S.H. Wang, X.D. Hu, Y.J. Dai, Ceram. Int., 73, 1210 (2017).

[12]A.Z. Kamran, G. Hossein, Compos. Sci. Technol., 139, 117 (2017).

[13]F. Lin, Y. Xiang, H.S. Shen, Compos. Part B-Eng., 111, 261 (2017).

[14]L. Mészáros, J. Szakács, J. Reinf. Plast. Comp., 35, 1671 (2016).

[15]E. Padenko, L.J. Rooyen, B. Wetzel, et al., J. Reinf. Plast. Comp., 35, 892 (2016).

[16]O.D. Iakobson, O.L. Gribkova, A.R. Tameev, et al., Synthetic. Met., 211, 89 (2016).

[17]W. Haibo, T. Kunyue, C. Cheng, et al., Mater. Lett., 186, 78 (2017).

[18]E.Z. Seyed, A. Hamed, G. Ismaeil, Compo. Sci. Technol., 14, 10 (2017).

[19]J. Dalal, A. Gupta, S. Lather, et al., J. Alloy. Compd., 68, 52 (2016).

[20]K. Rajendran, G. Karuppasamy, J. Mater. Sci., Mater. Electro., 10, 10634 (2016).

[21]G.H. Mir,S. Elham, J. Mater. Sci. Techno., 8, 763 (2016).

[22]R. Jain, A. Sinha, A.L. Khan, Mater. Sci. Eng., C, 65, 205 (2016).

[23]M. Le, C. Huaiyin, G. Tong, et al., J. Polym. Sci. Part. A, Polym. Chem., 12, 1762 (2016).

[24]B. Shou, G. Jun, S. Jian, et al., Ind. Eng. Chem. Res., 19, 5788 (2016).

[25]C. Li, F. Shao, Z. Dong, et al., J. Colloid. Interf. Sci., 490, 197 (2017).

[26]F. Zeng, G. Feng, T. Son,et al., Carbon, 81, 396 (2015).

[27]Y.P. Seong, M.H. Zheng, R.Y. Jae, Curr. Appl. Phys., DOI:10.1016/j.cap.2017.02. 006 (2017).

[28]M. Mahkam, A.A. Rafi, L. Faraji, Polym. Plast. Technol. Eng., 9, 916 (2015).

[29]K. Thangavelu, I.K. Kang, S.Y. Park., Polym. Int., 11, 1660 (2015).

[30]V. Mittal, Macromol. Mater. Eng., 299, 906 (2014).

[31]S. Rahim, K. Ayesha, M. Bakhtiar, S. Sayed, Polym. Plast. Technol. Eng., 54, 173 (2015).

[32]N. Saravanan, R. Rajasekar, S. Mahalakshmi, T.P. Sathishku-mar, J. Reinf. Plast. Compos., 33, 1158 (2014).

[33]D. Verma, T. Indian I. Metals, 67, 803 (2014).

[34]Y. Gao, Nanoscale Res. Lett., [doi]: 10.1186/s11671-017-2150-5 (2017).

[35]M. Miculescu, V. K. Thakur, Polym. Adv. Technol., 27, 844 (2016).

[36]C. Zhang, T.X. Liu, Chinese Sci. Bull., 57, 3010 (2012).

[37]W.E. Mahmoud. Eur. Polym. J., 47,1534 (2011).

[38]R. Verdejo, M.M. Bernal, L.J. Romasanta, et al., J. Mater. Chem., 21, 3301 (2011).

[39]H. Kim, Y. Miura, C.W. Mater. Chem. 22, 3441 (2010).

[40]K. Wakabayashi, C. Pierre, D.A. Dikin, et al., Macromolecules 41, 1905 (2008).

[41]H.B. Zhang, W.G. Zheng, Q. Yan, et al., Polymer, 51, 1191 (2010).

[42]M. AlSaleh, J. Electro. Mater., 45, 3532 (2016).

[43]T. Arya, H. Justin, Z.Z. Dong, et al., Mater. Sci. Eng. B, 216, 41 (2016).

[44]F. You, Polym. Int., 63, 93 (2014).

[45]H. Wang, G.Y. Xie, C. Yang, Y.X. Zheng, Z. Ying, Polym Compos., 38, 138 (2017).

[46]Y.Q. Gao, O.T. Picot, E. Bilotti, T. Peijs, Eur. Polym. J. 86, 117 (2017).

[47]J.J. Zhang, S.H. He, P.R. Lv, Y.Q. Chen, J. Appl. Polym. Sci., doi: 10.1002/app.44486 (2017).

[48]W. Wu, C.K. Wu, H.Y. Peng, et al., Compos. Part B, Eng.,113, 300 (2017).

[49]B. Shen, W.T. Zhai, M.M. Tao, et al., Compos. Sci. Technol., 86, 109 (2013).

[50]S. Jiyeon, B. Donghyun. Compo. B: Eng., 95, 317 (2016).

[51]H.C. Chun, J.Y. Ruey, Microfluid. Nanofluid, 20, 168 (2016).

[52]S. Scalese, I. Nicotera, New J. Chem., 40, 3654 (2016).

[53]T.A. Blanchet, N. Koratkar, S. Bhargava. Tribol. Lett., 59, 17 (2015).

[54]M. Fang, K. Wang, H. Lu, et al., J. Mater. Chem., 20, 1982 (2010).

[55]C. Indrani, S. Arun, B. Arijit, J. Mater. Sci., 51, 10555 (2016).

[56]Q.Q. Bai, X. Wei, J.H. Yang, et al., Compos. Part A, Appl. Sci. Manufact., 96, 89 (2017).

[57]J. Dong. Part. Part. Syst. Char., 31, 1072 (2014).

[58]J. Liang, Y. Xu, Y. Huang, et al., J. Phys. Chem. C, 113, 9921 (2009).

[59]U. Khan, P. May, A. O‘Neill, et al., Carbon, 48, 4035 (2010).

[60]Q.F. Jing, Mater. Design, 85, 808 (2015).

[61]T. Ramanathan, A.A. Abdala, S. Stankovich, et al., Nat. Nano-technol., 3, 327 (2008).

[62]T. Ramanathan, S. Stankovich, D.A. Dikin, et al., J. Polym. Sci. Part B, Polym. Phys., 45, 2097 (2007).

[63]Y.W. Wang, X. Liao, S.J. Li, et al., Polym. Int., 65(10): 1195 (2016).

[64]Y.W. Wang, J. Mater. Sci. Technol., 31, 463 (2015).

[65]R. Balasubramaniyan, Electro. Mater. Lett. 9, 837 (2013).

[66]T. Kuila, S. Bose, C.E. Hong, et al., Carbon, 49, 1033 (2011).

[67]Y. Lin, J. Jin, M. Song, J. Mater. Chem., 21, 3455 (2011).

[68]A.J. Bourque, C.R. Locker, A.H. Tsou, et al., Polymer, 99, 263 (2016).

[69]Y.F. An, Z.X. Tai, Y.Y. Qi, et al., J. Appl. Polym. Sci., Doi: 10.1002/app.39640 (2014).

[70]L. Chen, X.H. Li, LY. Wang, W. Wang, Z.W. Xu, Polym. Compos., 38, 5 (2017).

[71]X. Wang, L. Li, Q. Yan, G. Liu, C. Deng, X. Liao, Microchim. Acta, 184, 1 (2017).

[72]Q.Q. Bai , X. Wei, J.H. Yang , et al., Compos. Part A, Appl. Sci. Manuf., 96, 89 (2017).

[73]F. Barroso-Bujans, S. Cerveny, R. Verdejo, et al., Carbon, 48, 1079 (2010).

[74]R.M. Hossein, H.A. Vahid, K. Khezrollah, et al., Polym. Eng. Sci., 55, 1720 (2015).

[75]R.M. Hossein, H.A. Vahid, S. Zahra, et al., Colloid Polym. Sci. 293, 735 (2015).

[76]R. Nutenki, I. Kattimuttathu, M. Suresh, et al., Macromol. Ma-ter. Eng., 301, 81 (2016).

[77]R.M. Hossein, H.A. Vahid, Polym. Compos., 35, 386 (2014).

[78]R.M. Hossein, H.A. Vahid, K. Khezrollah, et al., Iran Polym. J., 24, 51 (2015).

[79]X. Wang, Y. Hu, L. Song, et al., J. Mater. Chem., 21, 4222 (2011).

[80]L. Alessandra, R. Martina, B. Andrea, et al., Polym. Adv. Technol., 27, 303 (2016).

[81]S. Jiang, Q.F. Li, J.W. Wang, et al., Compos. Part A, Appl. Sci. Manuf., 87, 1 (2016).

[82]P. Pashupati, P. Bishweshwar, K. Pokhrelc, et al., Compos. Part B, Eng., 78, 192 (2015).

[83]A.S. Patole, S.P. Patole, H. Kang, et al., J. Colloid. Int. Sci., 350, 530 (2010).

[84]A.N. Ionov. J. Low. Temp. Phys., 185, 515 (2016).

[85]J.R. Potts, S.H. Lee, T.M. Alam, et al., Carbon, 49, 2615 (2011).

[86]L.Y. Zhang, Y.F. Zhang, J. Appl. Polym. Sci., Doi:10.1002/app.43423(2016).

[87]M.A. Rafiee, J. Rafiee, Z. Wang, et al., ACS Nano, 3, 3884 (2009).

[88]M.A. Rafiee, J. Rafiee, I. Srivastava, et al., Small, 6, 179 (2010).

[89]Y.P. Wu, Polym. Test., 58, 262 (2017).

[90]W.X. Li, Z.W. Xu, L. Chen, et al., Chem. Eng. J., 237, 291 (2014).

[91]S.C. Zhang, P.Q. Liu , X.S. Zhao , et al., Appl. Surf. Sci., 396, 1098 (2017).

[92]Y.H. Lu, J.C. Hao, G.Y. Xiao, et al., Appl. Surf. Sci., 394, 78(2017).

[93]L. Poláková, Z. Sedláková, P. Ecorchard, Eur. Polym. J.,94, 431 (2017).

[94]X.Y. Zhang, A. Ciesielski, F. Richard, Small, 12, 1044 (2016).

[95]Z.L. Yang, X.J. Shi, J.J. Yuan, Appl. Surf. Sci., 257, 138 (2010).

[96]T.N. Zhou, F. Chen, C. Tang, Compos. Sci. Technol., 71, 1266 (2011).

[97]D.Z. Wang, X. Lu and J.P. Qu. Polym. Compos. doi:10.1002/pc.24310 (2017).

[98]A. Gigotab, A. Morraa, M. Castellinob, Polymer, 108, 251 (2017).

[99]L. Meng, H.Y. Chen, T. Ge, et al., J. Polym. Sci. Part A, Polym. Chem., 54, 1762 (2016).

[100]Y.L. Zhou, H. Dong, L.T. Liu, J. Liu, Biosens. Bioelectron., 60, 231(2014).

[101]X. Zhang, L. Wu, J.W. Zhou, X.H. Zhang, J.H. Chen, J. Elec-troanal. Chem., 742, 97 (2015).

[102]X. Lin, Y. Ni, S. Kokot. J. Hazard. Mater. 260, 508 (2013).

[103]Y.M. Liang, Q. ChenAuthor Vitae, R. Yang, Actuators B: Chemical, 251, 542 (2017).

[104]B.M. Huang, C.W. Yao, Q.Q. Bian, et al., Phys. Test. Chem. Anal., 45, 319 (2009).

[105]Z. Cai, J.N. Gan, D.F. Lu, et al., Asian J. Chem., 24, 4986 (2012).

[106]Y. Li, Y.F. Li, J. Gao, et al., Electroanalysis, 27, 1719 (2015).

[107]L. Wang, Y.F. Li, Q.Q. Wang, et al., Actuators B, Chem., 228, 214 (2016).

[108]Y. Li, Y. Gu, B. Zheng, et al., Talanta, 162, 80 (2017).

[109]R. Ojani, J.B. Raoof, A.A. Maleki, et al., Chin. J. Catal., 35, 423 (2014).

[110]H.X. Dai, N. Wang, D.L. Wang, et al., Chem. Eng. J., 299, 150 (2016).

[111]L. Yang, B.J. Xu, H.L. Ye, et al., Sensor. Actuat. B, Chem, 251, 601 (2017).

[112]S.L. Bai, J. Guo, J.H. Sun, et al., Ind. Eng. Chem. Res., 19, 5788 (2016).

[113]L.L. Yu, H.J. Zheng, M.X. Shi, Food Anal. Method., 10, 200 (2017).

[114]S. Ozge, B. Gulcin, Talanta, 168, 113 (2017).

[115]M. Şinoforoğlu, K. Dağcı, M. Alanyalıoğlu, Superlattice. Microst., 94, 231 (2016).

[116]K.O. Otieno, Y. Kai, L. Lan, Electroanalysis, 28, 76 (2016).

[117]A. Tanvir, B. Rani, M. Faruq, Graphene Tech., 1,1 (2016).

[118]D. Zhao, Y. Wang, G.M. Nie, Microchim. Acta, 183, 2925 (2016).

[119]D. Sangamithiraia, A. Vitae, V. Narayananb, Mater. Sci. Eng. C, Mater. Biol. Appl., 55, 579 (2015).

[120]K. Surajit, B. Abida, B. Shreemoyee, et al., J. Polym. Res, Doi: 10.1007/s10965-017-1195-6 (2017).

[121]J. Rajeev, S. Ankita, Mater. Sci. Eng. C, 65,205 (2016).

[122] Y. Bo, H.Y. Yang, Y. Hu , et al., Electrochim. Acta, 56, 2676 (2011).

[123]J.J. Zhang, S.H. He, P.R. Lv, J. Appli. Polym. Sci. [doi]10.1002/app.44486 (2017).

[124]Z.W. Zhou, Y. Wang, T, et al., Huang. Compo. A, 96, 89 (2017).

[125]P.J. Liu, W.H. Chen, Y.B. Jia, et al., Mater. Des., 134, 121 (2017).

[126] A. Shigeru, P. Yong, O. Toshiaki., Polymer, 55, 2077 (2014).