Manganese(III) Porphyrin as Electrocatalyst for Hydrogen Evolution Reaction

Manganese(III) Porphyrin as Electrocatalyst for Hydrogen Evolution Reaction

Khalaf Alenezi

Department of Chemistry, Faculty of Science, University of Hail, Hail, Kingdom of Saudi Arabia

Corresponding Author Email: 
k.alenezi@uoh.edu.sa
Page: 
43-47
|
DOI: 
https://doi.org/10.14447/jnmes.v20i1.294
Received: 
09 December 2016
| |
Accepted: 
10 March 2017
| | Citation
Abstract: 

5,10,15,20-tetraphenyl-21H,23H-porphine manganese(III) chloride (Mn(TPP)Cl) has been evaluated as electrocatalyst for Hydrogen Evolution Reaction (HER) in the presence of triethylamine hydrochloride (Et3NHCl) as source of proton. The direct reduction of Et3NHCl on vitreous carbon electrode occurs at Ep -1.6 V vs Ag/AgCl in [Bu4N][BF4]-CH3CN. Interestingly, in the presence of Mn(TPP)Cl as electrocatalyst the reduction potential shifts to -1.20 V. Based on gas chromatography analysis, the formation of H2 gas, with a current efficiency of ca. 58% after 2 h, is observed with a yield of 8 μmoles and a turnover of 2.5. However, the chemical yield at carbon electrode was about 35%. These results reflect the exquisite electrocatalytic efficiency of Mn(TPP)Cl in Hydrogen Evolution Reaction (HER).

Keywords: 

porphyrin, electrocatalysis, hydrogen, manganese(III)I complex, porphyrin

1. Introduction
2. Experimental
3. Results and Discussion
4. Conclusions
5. Acknowledgment
  References

[1] Aresta M, Nobile C, Albano V, Formi E and Manassero M., J. Chem. Soc., Chem. Commun., 15, 636 (1975).

[2] Bhugun L, Lexa D and Saveant J-M . J. Am. Chem. Soc., 118, 1769 (1996).

[3] Benson E E, Kubiak C P, Sathrum A J and Smieja J M, Chem. Soc. Rev., 38, 89 (2009).

[4] Riduan S N and Zhang Y., Dalton Trans., 39, 3347 (2010).

[5] Windle C D and Perutz R N, Coord. Chem. Rev., 256, 2562 (2012).

[6] Alenezi K, Ibrahim S K, Li P and Pickett C J . Chem. Eur. J., 19, 13522 (2013).

[7] Edwards P P, Kuznetsov V L and David W I F. Phil. Trans., R. Soc. A 365, 1043 (2007).

[8] Rosen M, Journal of Power and Energy Engineering, 3, 373 (2015).

[9] Webster L R, Ibrahim S K, Wright J A and Pickett C J., Chem. Eur. J., 18, 11798 (2012).

[10]Cavell A C, Hartley C L, Liu D, Tribble C S, McNamara W R .Inorg. Chem., 54, 3325 (2015).

[11]Meng H, Zeng D and Xie F, Catalysts, 5, 1221 (2015).

[12]Bullock R M, Appel M A and Helm M L . Chem. Commun., 50, 3125 (2014).

[13]Hoffert W A, Roberts J A S, Bullock R M and Helm M L, Chem. Commun., 49, 7767 (2013).

[14]Esposito D V, Hunt S T, Kimmel Y C and Chen J G . J. Am. Chem. Soc., 134, 3025 (2012).

[15]L’vov B V and Galwey A K J. Therm. Anal. Calorim., 112, 815 (2014).

[16]Zalitis C, Sharman J, Wright E and Kucernak A, Electrochim. Acta, 176, 763 (2015).

[17]Zheng L and Dean D R, J. Biol. Chem., 269, 18723 (1994).

[18]Beinert H, FASEB J., 4, 2483 (1990).

[19]Rees D C, Annu., Rev. Biochem., 71, 221 (2002).

[20]Christou G, Hageman R V and Holm R H, J. Am. Chem. Soc., 102, 7600 (1980).

[21]Peters J W, Stowell M H, Soltis S M, Finnegan M G, Johnson M K and Rees D C, Biochemistry, 36, 1181 (1997).

[22]Garcin E, Vernede X, Hatchikian E C, Volbeda A, Frey M and Fontecilla-Camps. J C, Structure, 7, 557 (1999).

[23]Mayer S M, Lawson D M, Gormal C A, Roe S M and Smith B E, J. Mol. Biol., 292, 871 (1999).

[24]Stiebritz M T and Reiher M, Inorg. Chem., 49, 5818 (2010).

[25]Tooley C A, Pazicni S and Berda E B, Polym. Chem., 6, 7646 (2015).

[26]Collman J P, Wagenknecht P S, and Lewis N S J. Am. Chem. Soc., 114 ,5665 (1992).

[27]Bhugun I, Lexa D and Saveant J, J. Am. Chem. Soc., 16, 3982 (1996).

[28]Bard A J and Fox M A, Acc. Chem. Res., 28, 141 (1995).

[29]Greef R, Peat R, Peter L M, Pletcher D and Robinson J . Instrumental Methods in Electrochemistry, Woodhead Publishing Limited, Cambridge, 2011.

[30]Hagen J. Industrial Catalysis: a Practical Approach, 2nd edition, Wiley–VCH, Weinheim, 2006.

[31]Liu T, DuBois D L and Bullock R M . Nat. Chem., 5, 228 (2013).