High Sensitivity Electrochemical Multisensors based on Graphene-PANI Nanocomposite for Simultaneous Detection of Glucose and Urea

High Sensitivity Electrochemical Multisensors based on Graphene-PANI Nanocomposite for Simultaneous Detection of Glucose and Urea

Meysam Karimi Mohammad Rabiee Mojgan Abdolrahim Mohammadreza Tahriri* Daryoosh Vashayee Lobat Tayebi

Biomaterials Group, Faculty of Biomedical Engineering, Amirkabir University of Technology, Tehran, Iran

Marquette University School of Dentistry, Milwaukee, WI, 53233, USA

Electrical and Computer Engineering Department, North Carolina State University, Raleigh, NC 27606, USA

Department of Engineering Science, University of Oxford, Oxford OX1 3PJ, UKrd OX1 3PJ, UK

Corresponding Author Email: 
Mohammadreza.tahriri@marquette.edu
Page: 
145-150
|
DOI: 
https://doi.org/10.14447/jnmes.v19i3.311
Received: 
22 April 2016
| |
Accepted: 
30 July 2016
| | Citation
Abstract: 

We present a study of the effect of graphene–PANI nanocomposites on the sensitivity of the urea and glucose multisensory. We used an electroctrochemical multisensor based on two electrodes located in a reservoir with two separate channels. The urease and glu-cose oxidase (GOD) were employed for detecting the urea and glucose, respectively. We characterized the graphene and graphene-PANI samples with X-ray Diffraction (XRD) analysis and scanning electron microscopy (SEM) observations. We further performed the Cyclic voltammetry and Amperometry tests. The collected experimental results revealed that the intensity of the peak significantly increases with the concentration of the urea and glucose.

Keywords: 

multisensor, graphene, PANI, glucose, urea, simultaneous

1. Introduction
2. Experimental Procedure
3. Results
4. Discussion-Graphene and PANI Applications
5. Conclusions
  References

[1] Bahmani, B., et al., Synthetic Metals, 160, 2653 (2010).

[2] Yazdanpanah, S., et al., TrAC Trends in Analytical Chemistry, 72, 53 (2015).

[3] Abdolrahim, M., et al., Analytical biochemistry, 485, 1 (2015).

[4] Bahmani, B., et al., Asian Journal of Chemistry, 21, 923 (2009).

[5] FUNKCIONALIZIRANIH, M.K.S., Materiali in tehnologije, 47, 235 (2013).

[6] Mohagheghpour, E., et al., A new optical bio-sensor: Wetchemical synthesis and surface treatment of nanocrystalline Zn 1-x S: Mn+ 2 x. in Optical Sensors. 2011. Optical Society of America.

[7] Abdorahim, M., et al., TrAC Trends in Analytical Chemistry, 82, 337 (2016).

[8] Tayebi, M., et al., Journal of Fluorescence, 1 (2016).

[9] Tayebi, M., et al., Colloid and Polymer Science, 1 (2016).

[10]Andreescu, S. and O.A. Sadik, Pure and applied chemistry, 76, 861 (2004).

[11]Shahbazian, E., G. Rogova, and P. Valin, Data fusion for situation monitoring, incident detection, alert and response management. Vol. 198. 2005: IOS Press.[12]Heller, A. and B. Feldman, Chemical reviews, 108, 2482(2008).

[13]Ward Muscatello, M.M., L.E. Stunja, and S.A. Asher, Analytical chemistry, 81, 4978 (2009).

[14]Odaci, D., et al., Biomacromolecules, 10, 2928 (2009).

[15]Battelino, T., et al., Diabetes Care, 34, 795 (2011).

[16]Pagon, R., et al., Lesch-Nyhan Syndrome--GeneReviews (®). 2014.

[17]Steiner, M.-S., A. Duerkop, and O.S. Wolfbeis, Chemical Society Reviews, 40, 4805 (2011).

[18]Chen, C., et al., Rsc Advances, 3, 4473 (2013).

[19]So, C.-F., et al., Medical devices, 5, 45 (2012).

[20]Clark, L.C. and C. Lyons, Annals of the New York Academy of sciences, 102, 29 (1962).

[21]Si, P., et al., RSC Advances, 3, 3487 (2013).

[22]Sassolas, A., L.J. Blum, and B.D. Leca-Bouvier, Biotechnology Advances, 30, 489 (2012).

[23]Hummers Jr, W.S. and R.E. Offeman, Journal of the American Chemical Society, 80, 1339 (1958).

[24]Zhao, Y.S., J. Wu, and J. Huang, Journal of the American Chemical Society, 131, 3158 (2009).

[25]Zheng, J., et al., Procedia Engineering, 27, 1478 (2012).

[26]Mohagheghpour, E., et al., IEEE transactions on nanobioscience, 11, 317 (2012).

[27]Mohagheghpour, E., et al., Materials Science and Engineering: C, 29, 1842 (2009).

[28]Liu, F., J.Y. Choi, and T.S. Seo, Biosensors and Bioelectronics, 25, 2361 (2010).

[29]Fang, Y., et al., Langmuir, 26, 11277 (2010).

[30]Zhou, K., et al., Electrochimica Acta, 55, 3055 (2010).

[31]Robinson, J.T., et al., Nano letters, 8, 3137 (2008).

[32]Fowler, J.D., et al., ACS nano, 3, 301 (2009).

[33]Al-Mashat, L., et al., The Journal of Physical Chemistry C, 114, 16168 (2010).

[34]Zhang, L.L., et al., Langmuir, 26, 17624 (2010).

[35]Zhang, K., et al., Chemistry of Materials, 22, 1392 (2010).

[36]Stankovich, S., et al., Nature, 442, 282 (2006).

[37]Ramanathan, T., et al., Nature nanotechnology, 3, 327 (2008).

[38]Xu, Y., et al., Nano Research, 2, 343 (2009).

[39]Wang, H., et al., ACS applied materials & interfaces, 2, 821 (2010).

[40]Yan, X., et al., ACS applied materials & interfaces, 2, 2521 (2010).

[41]Xu, J., et al., ACS nano, 4, 5019 (2010).

[42]Huang, J., et al., Chemistry–A European Journal, 10, 1314 (2004).

[43]Kukla, A., et al., Sensors and Actuators B: Chemical, 135, 541 (2009).

[44]Li, C., H. Bai, and G. Shi, Chemical Society Reviews, 38, 2397 (2009).

[45]Rahman, M.A., et al., Analytical chemistry, 81, 6604 (2009).

[46]Chen, Y. and Y. Luo, Advanced Materials, 21, 2040 (2009).

[47]Tolani, S.B., et al., Analytical and bioanalytical chemistry, 393, 1225 (2009).

[48]Li, W., et al., Sensors and Actuators B: Chemical, 143, 132 (2009).

[49]Ma, X., et al., Materials chemistry and physics, 98, 241 (2006).

[50]Ma, X., et al., Macromolecular Materials and Engineering, 291, 1539 (2006).

[51]Ma, X., et al., Recent patents on nanotechnology, 4, 150 (2010).

[52]Xuan, S., et al., Langmuir, 25, 11835 (2009).

[53]Khan, J.M., R. Kurchania, and V.K. Sethi, Thin Solid Films, 519, 1059 (2010).

[54]Yang, N., et al., Synthetic Metals., 160, 1617 (2010).

[55]Wang, D.-W., et al., ACS nano, 3, 1745 (2009).

[56]Bissessur, R., et al., Langmuir, 22, 1729 (2006).

[57]Wang, H.,ey al., Electrochemistry Communications, 11, 1158 (2009).