Pd Octahedral and Spherical Nanocrystals Supported on Crumpled Graphene Oxide: Their Comparative Studies for Electrocatalytic Applications

Pd Octahedral and Spherical Nanocrystals Supported on Crumpled Graphene Oxide: Their Comparative Studies for Electrocatalytic Applications

Majid Khan* Ammar Bin Yousaf* Muhammad Imran

Department of Physics, Abdul Wali Khan University, Mardan 23200, Pakistan

Hefei National Laboratory for Physical Sciences at Microscale, Department of Nano Chemistry, School of Chemistry and Material Science, University of Science and Technology of China, Hefei 230026, China

Corresponding Author Email: 
majidkhan@awkum.edu.pk, majids@hotmail.com
Page: 
121-130
|
DOI: 
https://doi.org/10.14447/jnmes.v19i3.308
Received: 
11 April 2016
| |
Accepted: 
10 July 2016
| | Citation
Abstract: 

Palladium (Pd) octahedral and spherical nanocrystals (NCs) were successfully synthesized on crumpled graphene oxide (GO) by surface adsorption of H2 and CO in the presence of capping agent poly(vinylypyrrolidone) (PVP). Their comparative studies as anode material for direct methanol fuel cells (DMFCs) have been measured by hydrogen evolution reaction (HER) performance and methanol oxidation reaction (MOR) activity. The electrocatalytic properties of both the nanocrystals were studied in HClO4 acidic media and com-pared with each other. Pd octahedral nanocrystals have shown the best performance as an anode material, their onset potential for evolu-tion of hydrogen from the active sites of the catalyst is more towards zero than the spherical NCs. The observed specific activity (ca. 4.3 mA.cm-2) and mass activity (ca. 5300 mA.mg-1) of Pd towards MOR is much higher for octahedral NCs than that of spherical NCs.

Keywords: 

Pd nanocrystals, graphene oxide, surface adsorption, hydrogen evolution reaction, methanol oxidation reaction

1. Introduction
2. Experimental Section
3. Results and Discussion
4. Conclusions
5. Supplementary Information
6. Acknowledgements
  References

[1] T. K. Sau, A. L. Rogach, F. Jackel, T. A. Klar, J. Feldmann, Adv. Mater., 22, 1805 (2010).

[2] A. R. Tao, S. Habas, P. Yang, Small, 4, 310 (2008).

[3] T. Teranishi, M. Hosoe, T. Tanaka, M. Miyake, J. Phys. Chem. B, 103, 3818 (1999).

[4] M. Khan, A. B. Yousaf, M. Chen, C. Wei, X. Wu, N. Huang, Z. Qi, L. Li, J. Power Sources, 282, 520 (2015).

[5] Y. N. Xia, Y. J. Xiong, B. Lim, S. E. Skrabalak, Angew. Chem. Int. Ed., 48, 60 (2009).

[6] T. K. Sau, A. L. Rogach, Adv. Mater., 22, 1781 (2010).

[7] Z. Y. Zhou, N. Tian, J. T. Li, I. Broadwell, S. G. Sun, Chem. Soc. Rev., 40, 4167 (2011).

[8] D. Astruc, F. Lu, J. R. Aranzaes, Angew. Chem., Int. Ed., 44, 7852 (2005).

[9] R. Narayanan, M. A. El-Sayed, J. Phys. Chem., 109, 12663 (2005).

[10]Z. M. Peng, H. Yang, Nano Today, 4, 143 (2009).[11]Y. Sun, Y. Xia, Science, 298, 2176 (2002).

[12]H. Zhang, M. Jin, Y. Xia, Angew. Chem., Int. Ed., 51, 7656 (2012).

[13]M. Chen, B. Wu, Y. Yang, N. Zheng, Adv. Mater., 24, 862 (2012).

[14]X. Huang, S. Tang, H. Zhang, Z. Zhou, N. Zheng, J. Am. Chem. Soc., 131, 13916 (2009).

[15]T. K. Sau, A. L. Rogach, Complex-shaped Metal Nanoparti-cles: Bottom-up Synthesis and Applications, John Wiley & Sons, Germany, 2012.

[16]L. D. Rampino, F. F. Nord, J. Am. Chem. Soc., 63, 2745 (1941).

[17]W. Zhang, X. Chen, R. A. Boulos, J. Toster, C. L. Raston, Chem. Comm., 50, 15167 (2014).

[18]B. Wu, N. Zheng, G. Fu, Chem. Commun., 47, 1039 (2011).

[19]G. Chen, Y. Tan, B. Wu, G. Fu, N. Zheng, Chem. Commun., 48, 2758 (2012).

[20]Y. Xiong, Y. Xia, Adv. Mater., 19, 3385 (2007).

[21]X. Huang, S. Tang, X. Mu, Y. Dai, G. Chen, Z. Zhou, F. Ruan, Z. Yang, N. Zheng, Nat. Nanotechnol, 6, 28 (2011).

[22]X. Huang, S. Tang, J. Yang, Y. Tan, N. Zheng, J. Am. Chem. Soc., 133, 15946 (2011).

[23]Y. Dai, X. Mu, Y. Tan, K. Lin, Z. Yang, N. Zhen, G. Fu, J. Am. Chem. Soc., 134, 7073 (2012).

[24]W. S. Hummers, R. E. Offeman, J. Am. Chem. Soc., 80, 1339 (1958).

[25]M. Khan, A. B. Yousaf, M. Chen, C. Wei, X. Wu, N. Huang, Z. Qi, L. Li, Nano Res., 9, 837 (2016).

[26] S. Thakur, N. Karak, Carbon, 50, 5331 (2012).

[27] H. Zhang, P. X. Feng, Carbon, 48, 359 (2010).

[28]X. M. Chen, G. Wu, J. Chen, X. Chen, Z. Xie, X. Wang, J. Am. Chem. Soc., 133, 3693 (2011).

[29]Y. J. Song, M. Wang, X. Y. Zhang, J. Y. Wu, T. Zhang, Na-noscale Res. Lett., 9, 17 (2014).

[30]M. Tushaus, W. Berndt, H. Conrad, A. M. Bradshaw, B. Persson, Appl. Phys. A: Mater. Sci. Process, 51, 91 (1990).

[31]M. K. Rose, T. Mitsui, J. Dunphy, A. Borg, D. F. Ogletree, M. Salmeron, P. Sautet, Surf. Sci., 512, 48 (2002).

[32]E. Herrero, K. Franaszczuk, A. J. Wieckowski, Phys. Chem., 98, 5074 (1994).

[33]S. Schauermann, J. Hoffmann, V. Johanek, J. Hartmann, J. Libuda, H. J. Freund, Angew. Chem., Int. Ed., 41, 2532 (2002).

[34]Z. M. Peng, H. J. You, H. Yang, ACS Nano, 4, 1501 (2010).

[35]A. Eichler, Surf. Sci., 498, 314 (2002).

[36]C. J. Zhang, P. J. Hu, J. Am. Chem. Soc., 123, 1166 (2001).

[37]G. A. Somorjai, Y. Li, Introduction to Surface Chemistry and Catalysis, 2nd ed.; John Wiley & Sons, Hoboken, NJ, 2010.

[38]M. Morkel, G. Rupprechter, H. J. Freund, Surf. Sci., 588, 209 (2005).

[39]J. I. Cerda, B. Santos, T. Herranz, J. M. Puerta, J. Figuera, K. F. McCarty, J. Phys. Chem. Lett., 3, 87 (2011).

[40]J. E. Worsham, M. K. Wilkinson, C. G. Shull, J. Phys. Chem. Solids, 3, 303 (1957).

[41]W. Chen, J. R. Davies, D. Ghosh, M. C. Tong, J. P. Konopel-ski, S. W. Chen, Chem. Mater., 18, 5253 (2006).

[42]W. Palczewska, Adv. Catal., 24, 245 (1975).

[43]M. V. Goltsova, Int. J. Hydrogen Energy, 31, 223 (2006).

[44]L. L. Jewell, B. H. Davis, Appl. Catal. A, 310, 1 (2006).

[45]W. Drexel, A. Murani, D. Tocchetti, W. Kley, I. Sosnowska, D. K. Ross, J. Phys. Chem. Solids, 37, 1135 (1976).

[46]Y. Z. Lu, C. Wang, W. J. Chen, J. Power Sources, 196, 3033 (2011).

[47]Y. Lu, Y. Jiang, H. Wu, W. Chen, J. Phys. Chem. C, 117, 2926 (2013).

[48]D. Hao, S. Xue-Zhao, S. Cheng-Min, H. Chao, X. Zhi-Chuan, L. Chen, T. Yuan, W. Deng-Ke, G. Hong-Jun, Chin. Phys. B, 19, 106104 (2010).

[49]M. Jin, H. Zhang, Z. Xieb, Y. Xia, Energy Environ. Sci., 5, 6532 (2012).