A Heterojunction Based on Macro-porous Silicon and Zinc Oxide for Solar Cell Application

A Heterojunction Based on Macro-porous Silicon and Zinc Oxide for Solar Cell Application

N. Mendoza-Agüero V. Agarwal H. I. Villafán-Vidales J. Campos-Alvarez P. J. Sebastian

Instituto de Energías Renovables-UNAM, Temixco, Morelos 62580, México

Centro de Investigación en Ingeniería y Ciencias Aplicadas-UAEM Av. Universidad 1001, Cuernavaca, Morelos, México

Corresponding Author Email: 
27 September 2015
30 October 2015
29 November 2015
| Citation

Transparent and conductive Al doped zinc oxide (AZO) films were reactively sputtered from metallic targets onto macro-porous silicon (MPS) substrate to fabricate a heterojunction interface structure. A tungsten oxide (WO3) thin film was placed between metallic aluminum back contact and bulk silicon to extract photogenerated holes from the absorber. Due to the susceptibility of PS to naturally oxidize over the period of time, a thin film of SiO2 was thermally grown to stabilize the electrical response of the junction. Such thin layer acts as passive film to prevent recombination and is placed between the p-n junction. Photovoltaic properties of this heterojunction were studied by using the current density-voltage (J-V) measurement under AM 1.5 illumination. The experimental results show an increase in photovoltaic performance of AZO/MPS solar cell with a buffer layers of WO3. Such heterostructures are promising for the development of the low-cost, clean, and durable devices with appreciable light-to-electricity conversion efficiency.


heterojunction, solar cell, macro-porous silicon, zinc oxide, tungsten oxide

1. Introduction
2. Experiment Details
3. Results and Discussion
4. Conclusions

The authors appreciate the technical support received from Miss Maria Luisa Ramon and Mr. Gildardo Casarubias. This work was supported through the grants IT100413 and CONACYT 236978.


[1] A.B. Djurisic, Mater. Sci. & Eng., B38, 237 (2002).

[2] H. Czternastek, Opto-Electronics Review, 12, 49 (2004).

[3] T. Prasada Rao, T and Santhoshkumar, Appl. Surf. Sci., 255, 4579 (2009).

[4] S.T. Tan, B.J. Chen, X.W. Sun, W.J. Fan, H.S. Kwok, X.H. Zhang, S.J. Chua, J. Appl. Phys., 98, 013505 (2005).

[5] R.K. Shukla, A. Srivastava, K.C. Dubey, J. Crystal Growth, 294, 427 (2006).

[6] Young-Sung Kim, Weon-Pil Tai, Appl. Surf. Sci., 253, 4911 (2007).

[7] P. Teesetsopon, S. Kumar, J. Dutta, Int. J. Electrochem. Sci., 7, 4988 (2012).

[8] G. Gordillo, C. Calderón, Solar Energy Materials & Solar Cells, 69, 251 (2001).

[9] Q. Qi, T. Zhang, Q. Yu, R. Wang, Y. Zeng, L. Liu, H. Yang, Sensors and Actuators B, 133, 638 (2008).

[10]W. Zhang, Q. Meng, B. Lin, Z. Fu, Solar Energy Materials & Solar Cells, 92, 949 (2008).

[11]X.M. Zhang, D. Golberg, Y. Bando, N. Fukata, Nanoscale, 4, 737 (2012).

[12]Y.F. Zhu, D.H. Fan, Y.W. Dong, G.H. Zhou GH, Superlattices and Microstructures, 74, 261 (2014).

[13]F. Chen F, L. Wang, Light Trapping Design in Silicon-Based Solar Cells, Solar Cells - Silicon Wafer-Based Technologies, Prof. Leonid A. Kosyachenko (Ed.), ISBN: 978-953-307-747-5, InTech, 2011.

[14]Sang-Hun Jeong , Jae-Keun Kim , Bong-Soo Kim , Seok-Ho Shim , Byung-Teak Lee, Vacuum 76, 507 (2004).

[15]K. Lucas, O. Adetutu, C.C. Hobbs, Y. Musgrove, Yeong-Jyh Tom Lii, US Patent 6,004,850, (1999).

[16]M. Cid, N. Stem, C. Brunetti, A.F. Beloto, C.A.S. Ramos, Sur-face and Coatings Technology, 106 117 (1998).

[17]S.E. Lee, S.W. Choi, J. Yi, Thin Solid Films, 376, 208 (2000).

[18]M. Lipinski, P. Panek, Z. Siwatek, E. Beltowska, R. Ciach, Solar Energy Materials & Solar Cells, 72, 271 (2002).

[19]C.S. Solanki, R.R. Bilyalov, J. Poortmans, J. Nijs, R. Mertens, Solar Energy Materials & Solar Cells, 83, 101 (2004).

[20]H. Nouri, M. Bouaicha, B. Bessais, Solar Energy Materials & Solar Cells, 93, 1823 (2009).

[21]E. Osorio, R. Urteaga, L.N. Acquaroli, G. García-Salgado, H. Juárez, R.R. Koropecki, Energy Materials & Solar Cells, 95, 3069 (2011).

[22]A. Ramizy, W.J. Aziz, Z. Hassan, K. Omar, K. Ibrahim, Optik, 122, 2075 (2011).

[23]O. Bisi, S. Ossicini, L. Pavesi, Surface Science Reports, 38, 1 (2000).

[24]L. Santinacci, A.M. Gonçalves, N. Simon, A. Etcheberry, Elec-trochim. Acta, 56, 878 (2010).

[25]Y.S. Tsuo, J.R. Pitts, M.D. Landry, P. Menna, C.E. Bingham, A. Lewandowski, T.F. Ciszek, Sol. Energy Mater. Sol. Cells, 41-42, 41 (1996)

[26]W.A. Badawy, R.M. El-Sherif, S.A. Khalil, Electrochim. Acta, 55, 8563 (2010).

[27]G. Smestad, M. Kunst, C. Vial, Solar Energy Materials and Solar Cells, 26, 277 (1992).

[28]Y.S. Tsua, Y. Xiao, M.J. Heben, X. Wu, F.J. Pern, S.K. Deb, Proceedings of 23rd IEEE Photovoltaic Specialists Conference, IEEE, 287-293 (1993).

[29]Y.S. Tsuo, M.J. Heben, X. Wu, Y. Xiao, C.A. Moore, P. Ver-linden, S.K. Deb, Proceedings of MRS Symposium, 283, 405 (1993).

[30]K.A. Salman, Z. Hassan, K. Omar, Int. J. Electrochem. Sci., 7, 376 (2012).

[31]H. Zhu, J. Hupkes, E. Bunte, J. Owen, S. Huang, Solar Energy Materials & Solar Cells, 95, 964 (2011).

[32]Xiao-Mei Zhang, D. Golberg, Y. Bando, N. Fukata, Nanoscale, 4, 737 (2012).

[33]R. Pietruszka, G. Luka, K. Kopalko, E. Zielony, P. Bieganski, E. Placzek-Popko, M. Godlewski, Mater. Sci. in Semiconductor Proc., 25, 190 (2014).

[34]Arpita Jana, Siddhartha Ghosh, P. Sujatha Devi, Nil Ratan Bandyopadhyay, Mallar Ray, J. Mater. Chem. C, 2, 9613 (2014).

[35]O. Marin, G. Grinblat, A.M. Gennaro, M. Tirado, R.R. Koro-pecki, D. Comedi, Superlattices and Microstructures, 79, 29 (2015).

[36]R.G. Singh, F. Singh, I. Sulania, D. Kanjilal, K. Sehrawat, V. Agarwal, R.M. Mehra, Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 267, 2399 (2009).

[37]X.L. Huang, S.Y. Ma, L.G. Ma, H.Q. Bian, C. Su, Physica E: Low-dimensional Systems and Nanostructures, 44, 190 (2011).

[38]Y. Kumar, M. Herrera, F. Singh, S.F. Olive-Méndez, D. Kan-jilal, S. Kumar, V. Agarwal, Materials Science and Engineer-ing: B, 177, 1476 (2012).