Fabrication of ZnO Nanorods on Silicon Substrates by Sol-gel Hyrdothermal Methods

Fabrication of ZnO Nanorods on Silicon Substrates by Sol-gel Hyrdothermal Methods

Yow-Chyun Shyu Min Han Lin Shang-Ren Lin Shang Lin Tsai Chin Pang Chen Meng-Lieh Sheu Hsiang Chen

Department of Dentistry, National Taiwan University Hospital, Chuang Te Street, Taipei 10016, Taiwan, ROC

Department of Applied Material and Optoelectronic Engineering, National Chi Nan University, 54561, Puli, Taiwan, R.O.C.

Department of Electrical Engineering, National Chi Nan University, No. 1, University Road, Puli, Nantou County, 54561, Taiwan ROC

Corresponding Author Email: 
11 February 2015
22 April 2015
30 June 2015
| Citation



ZnO nanorods were deposited on silicon substrate using sol-gel hydrothermal methods. The seed layer was first grown by sol-gel methods and then annealed at temperatures of 300ºC, 400ºC, 500ºC and 600ºC.  Multiple material and optical analyses including field-emission scanning electron microscope, energy dispersive X-ray spectroscopy, X-ray diffraction, photoluminescence spectra, and Raman spectra were conducted to examine the growth orientation and material properties. Results indicate that the ZnO nanorods annealed at a proper temperature of 400ºC could enhance orientation and material quality.


ZnO nanorods, Si substrate, sol-gel, hydrothermal, annealing

1. Introduction
2. Experimental
3. Results and Discussion
4. Conclusion

[1] W. I. Park, G. C. Yi, Adv. Mater., 16, 87 (2004).

[2] J. Goldberger, D. J. Sirbuly, M. Law, P. J. Yang, . J. Phys. Chem. B, 109, 9 (2004).

[3] Z. L.Wang, J. Song, Science, 312, 242 (2006).

[4] B. Kumar, K. Y. Lee, H. K. Park, S. J. Cha, Y. H. Lee, S. W. Kim, ACS Nano, 5, 4197 (2011).

[5] K. Haga, M. Kamidaira, Y. Kashiwaba, T. Sekiguchi, and H. Watanabe, H., J. Cryst. Growth, 77, 214 (2000).

[6] G. Wei, L. Zhengwei, Ceram. Int., 30, 1155 (2004).

[7] W. Sufeng, L. Jianshe, and W. Hua, Mater. Charact., 61, 1239 (2010).

[8] K. Doyoung, K. Hyemin, J. K. Min and K. Hyungjun, Appl. Surf. Sci., 257, 3776 (2011).

[9] R. Chander and A. K. Raychaudhuri, Solid State Commun., 145, 81 (2008).

[10] L. Bin., H. C. Zeng, J. Am. Chem. Soc., 125, 4430 (2003).

[11] L. Spanhel, K. Keis, S. E. Lindquist and A. Hagfeldt., J. Phys. Chem. B, 105, 3350 (2001).

[12] H. Chen, C. P. Chen, C. R. Yu, Y. T. Chen, C. C. Teng, K. Y. Lo, C. H. Lin, B. Y. Huang, Appl. Surf. Sci., 311, 422 (2014).

[13] H. Chen, Y. M. Yeh, Y. T. Chen, Y. L. Jiang, Ceram. Int., l40, 9757 (2014).

[14] Y. M. Yeh, H. Chen, Thin Solid Films, 544, 521 (2013).

[15] G. L. Agawane, S. W. Shin, S. A. Vanalakar, M. P. Surya-wanshi, A. V. Moholkar, J. H. Yun, J. H. Gwak, J. H. Kim, J Mater. Sci. Mater. Electron., 26, 1900 (2015).

[16] M. Guo, C. Y. Yang, M. Zhang, Y. J. Zhang, T. Ma, X. D. Wang, Electrochimica Acta, 53, 4633 (2008).

[17] G.Z. Jia, Y. F. Wang, J. H. Yao, Journal of Physics and Chem-istry of Solids, 73, 495 (2012).

[18] L. L. Kerr, X. Li, M. Canepa, A. J. Sommer, Thin Solid Films, 515, 5282 (2007).