Optimization of Parameters and Microstructural Properties of Ba0.5Sr0.5Co0.8Fe0.2O3-δ Thin Films Grown by Pulsed Laser Deposition (PLD)

Optimization of Parameters and Microstructural Properties of Ba0.5Sr0.5Co0.8Fe0.2O3-δ Thin Films Grown by Pulsed Laser Deposition (PLD)

Saša Zeljković>
Toni Ivas
Anna Infortuna
Ludwig J. Gauckler

University of Banja Luka, Faculty of Natural Sciences and Mathematics, Banja Luka, Bosnia and Herzegovina

ETH Zürich, Department of Materials, Zürich, Switzerland

Corresponding Author Email: 
sasa.zeljkovic@unibl.rs
Page: 
257-263
|
DOI: 
https://doi.org/10.14447/jnmes.v17i4.400
Received: 
8 April 2014
| |
Accepted: 
10 August 2014
| | Citation
Abstract: 

Ba0.5Sr0.5Co0.8Fe0.2O3−δ thin films were grown by pulsed laser deposition (PLD) in the temperature range from room temperature (RT) to 1073 K and at oxygen pressures from 6.66 to 39.99 Pa in order to produce dense defect-free thin films. Si with a native oxide layer and MgO were used as the substrate materials. The structure of the thin films was highly dependent on substrate temperature, material and oxygen partial pressure, leading to formation of different microstructures – pores, cracks, columnar and fibrous grains. Cracks and delamination of the thin films were observed in dense layers at higher temperatures, while this was not the case with the columnar thin films. Differences in thermal expansion coefficient, phase transformation and oxygen non-stoichiometry of BSCF are possible explanations for the cracking of the dense thin films. Thin films with a columnar structure are positively influenced by annealing inducing grain growth and densification.

Keywords: 

Ba0.5Sr0.5Co0.8Fe0.2O3−δ (BSCF), Pulsed laser deposition (PLD), Surface structure, Thin films

1. Introduction
2. Experimental
3. Experimental Results and Discussion
4. Conclusions
5. Acknowledgements

This research was done with the support of the Swiss Federal Commission for Scholarships for Foreign Students and the Ministry of Science and Technology of Republic of Srpska.

  References

[1] H. Wang, C. Tablet, A. Feldhoff and J. Caro, J. Memb. Sci.,, 20 (2005).

[2] C.K. Dyer, J. Power Sources, 106, 31 (2002).

[3] Z. Shao and S. Haile, Nature, 431, 170 (2004).

[4] D. Beckel, A. Bieberle-Hütter, A. Harvey, A. Infortuna, U.P. Muecke, M. Prestat, J.L.M. Rupp and L.J. Gauckler, J. Power Sources, 173, 325 (2007).

[5] J. Fleig, H.L. Tuller and J. Maier, Solid State Ionics, 174, 261 (2004).

[6] A. Evans, A. Bieberle-Hütter, J.L. M. Rupp and L.J. Gauckler, J. Power Sources, 194, 119 (2009).

[7] R. Eason (Ed.), Pulsed Laser Deposition of Thin Films, John Wiley, Hoboken, New York, 2007.

[8] F.S. Baumann, J. Fleig, H.U. Habermeier and J. Maier, Solid State Ionics, 177, 3187 (2006).

[9] M. Burriel, C. Niedrig, W. Menesklou, S.F. Wagner, J. Santiso and E. Ivers-Tiffée, Solid State Ionics, 181, 602 (2010).

[10] J.A. Thornton, Ann. Rev. Mater. Sci., 7, 239 (1977).

[11] S. Švarcová, K. Wiik, J. Tolchard, H.J.M. Bouwmeester and T. Grande, Solid State Ionics, 178, 1787 (2008).

[12] C. Niedrig, S. Taufall, M. Burriel, W. Menesklou, S.F. agner, S. Baumann and E. Ivers-Tiffée, Solid State Ionics, 197, 25 (2011).

[13] D.N. Mueller, R.A. De Souza, T.E. Weirich, D. Roehrens, J. Mayerb and M. Martina, Physical Chemistry Chemical Physics, 12, 10320 (2010).

[14] M. Arnold, T.M. Gesing, J. Martynczuk and A. Feldhoff, Chem. Mater., 20, 5851 (2008).

[15] A.A. Yaremchenko, S.M. Mikhalev, E.S. Kravchenko and J.R. Frade, http://dx.doi.org/10.1016/j.jeurceramsoc.2013.09.012

[16] X. Li, T. Kerstiens and T. Markus, Journal of Membrane Science, 438, 83 (2013).

[17] P. Müller, H. Störmer, L. Dieterle, C. Niedrig, E. Ivers-Tiffée and D. Gerthsen, Solid State Ionics, 206, 57 (2012).

[18] M.M. Kuklja, Y.A. Mastrikov, B. Jansang and E.A. Kotomin, Solid State Ionics, 230, 21 (2013).

[19] S. McIntosh, J.P.Vente, W.G. Haije, D.H.A. Blank and H.J.M. Bouwmeester, Chem.Mater., 18, 2187 (2006).

[20] R.B. Hetnarski and M.R. Eslami, Thermal Stresses-Advanced Theory and Applications, Springer, Berlin, 2009.

[21] O. Madelung, U. Rössler and M. Schulz (Eds.), Magnesium oxide (MgO) crystal structure, lattice parameters, thermal expansion, Landolt-Börnstein - Group III Condensed Matter, Springer, Berlin, 1999.

[22] B.X. Huang, J. Malzbender, R.W. Steinbrech, P. Grychtol, C.M. Schneider, and L. Singheiser, App. Phys. Lett., 95, 051901 (2009).

[23] B.X. Huang, J. Malzbender, R.W. Steinbrech and L. Singheiser, J. Membr. Sci., (2009), doi:10.1016/j.memsci.2009.08.026.

[24] J. Ovenstone, J. Jung, J.S. White, D.D. Edwards and S.T. Misture, J. Solid State Chem., 181, 576 (2008).

[25] S. Li, Z. Lü, X. Huang and W. Su, Solid State Ionics, 178, 1853 (2008).