Effect of Rare Earth Elements on the Structure and Electrochemical Properties of La0.63R0.2Mg0.17Ni3.1Co0.3 Al0.1 Alloy Electrodes

Effect of Rare Earth Elements on the Structure and Electrochemical Properties of La0.63R0.2Mg0.17Ni3.1Co0.3 Al0.1 Alloy Electrodes

Zhijie Gaor
Xiaodong Zheng
Ping Du
Yongchun Luo*

Department of Chemical Engineering, Binzhou University, Binzhou, 256600, P R China

Department of Materials Science and Engineer, Lanzhou University of Technology, Lanzhou, 730050, P R China

Corresponding Author Email: 
luoyc@lut.cn, gaozhijie1983@126.com
Page: 
235-242
|
DOI: 
https://doi.org/10.14447/jnmes.v17i4.397
Received: 
24 April 2014
|
Accepted: 
5 May 2014,
|
Published: 
25 November 2014
| Citation
Abstract: 

Abstract: Hydrogen storage allous $L a_{06}, R_{0,} M g_{017} N i_{3,1} C o_{0,3} A l_{0,1}(R=L a, C e, P r, N d, Y, S m, \text { Gd})$ based on $A_{2} B_{7}$ type were prepared by induction melting method The allous were ampealed at $1173 \mathrm{K}$ during a week in a sealed stainless steel tribe. The structure and the electro-electrochemical properties of the annealed alloys have been studied systematically by XRD, EPMA and electrochemical studies. The alloys structure consists mainly of $C e_{2} N i_{7}-t y p e\left(S G: P 6_{3} / m m c\right) L a_{2} N i_{7}$ phase as well as minor Gd $_{2} Co_{7}$-type $(S G: R-3 m)$ phase, LaNis $CaCu_5$-type, SG:P6/mmm phase. It is resulted that $L a_{0.65} Y_{0.2}$Mg$_{0.15}$Ni$_{3.1}$ Coo. $_{3} A l_{0.1}$ alloy exhibited the maximum electrochemical discharge capacity of 381.2 mAh·g-1. The best cycling stability was obtained with the $L a_{0.65} G d_{0.2} M g_{0.15} N i_{3.1} C O_{0.3} A l_{0.1}$ based alloy. This stability measured as the capacity retention rate at the 100th cycle (S100) was the highest for this sample (92.7%). The variation of the high rate discharge ability with the alloy composition. Its displayed a wave-like change. Firstly it increased from 24.5% (R = La) to 78.4% (R = Ce), then decreased to 14.4 % (R = Sm), and increased again to 63.8% with R = Gd.

Keywords: 

Rare earth elements; Alloy structure; Unit cell volume; Equilibrium pressure; Electrochemical properties

1. Introduction
2. Experiment
3. Result and Discussion
4. Conclusion
5. Acknowledgements

This work was supported by the National Nature Science Foundation of China (No. 50941019) and Doctor Foundation of Binzhou University (2009Y02).

  References

[1] Winter Carl-Jochen, Int. J. Hydrogen Energy, 29, 1095 (2004).

[2] Sakai T, Matsuoka, M, Iwakura, C. Handbook on the Physics and Chemistry of Rare Earths. In: Eyring L, editors. Rare earth intermetallics for metal-hydrogen batteries, Amsterdam: Elesvier; 1995, p.133-78.

[3] Feng F., Geng M., Northwood D.O., Int. J. Hydrogen Energy, 26, 725 (2001).

[4] Liu F.J., Suda S., J. Alloys Comp., 232, 232 (1996).

[5] Reilly JJ., Handbook of Battery Materials. In: Besenhard JO, editors. Metal Hydrides Electrode, New York: Wiley; 2000, p.239-68.

[6] Zhao XY., Ma LQ., Shen XD., J. Mater. Chem., 22, 277 (2012).

[7] Kadir K., Sakai T., Uehara I., J. Alloys Comp., 257, 115 (1997).

[8] Kadir K., Sakai T., Uehara I., J. Alloys Comp., 302, 112 (2000).

[9] Kohno T., Yoshida H., Kawashima F., Inaba T., Sakai I., Yamamoto M, et al., J. Alloys Comp., 311, L5 (2000).

[10] Zhang FL., Luo YC., Chen JP., Yan RX., Chen JH., J. Alloys Compd., 430, 302 (2007).

[11] Iwase K., Sakaki K., Nakamura Y., Akiba E., Inorg. Chem., 49, 8763 (2010).

[12] Chai YJ., Asano K., Sakaki K., Enoki H., Akiba E., J. Alloys Compd., 485, 174 (2009).

[13] Chai YJ., Sakaki K., Asano K., Enoki H., Akiba E., Kohno T., Scr. Mater., 57, 545 (2007).

[14] Ferey A., Cuevas F., Latroche M., Knosp B., Bernard P., Electrochim. Acta, 54, 1710 (2009).

[15] Hayakawa H., Akiba E., Gotoh M., Kohno T., Mater. Trans., 46, 1393 (2005).

[16] Nakamura J., Iwase K., Hayakawa H., Nakamura Y., Akiba E., J. Phys. Chem. C, 113, 5853 (2009).

[17] Nakamura Y., Nakamura J., Iwase K., Akiba E., Nucl. Instrum. Meth. A, 600, 297 (2009).

[18] Ozaki T., Kanemoto M., Kakeya T., Kitano Y., Kuzuhara M., Watada M. et al., J. Alloys Compd., 446, 620 (2007).

[19] Zhang QA., Fang MH., Si TZ., Fang F., Sun DL., Ouyang LZ. et al., J. Phys. Chem. C, 114, 11686 (2010).

[20] Zhang FL., Luo YC., Chen JP., Yan RX., Kang L., Chen JH., J. Power Sources, 150, 247 (2005).

[21] Zhang FL., Luo YC, Sun K, Wang DH, Yan RX, Kang L, et al., J. Alloys Compd., 424, 218 (2006).

[22] Zhang FL., Luo YC., Wang DH., Yan RX., Kang L., Chen JH., J Alloys Compd., 439, 181 (2007).

[23] Zhang J., Fang F., Zheng SY., Zhu J., Chen GR., Sun DL., et al., J. Power Sources, 172, 446 (2007).

[24] Denys RV., Yartys VA., Sato M., Riabov AB., Delaplane RG., J. Solid State Chem., 180, 2566 (2007).

[25] Filinchuk YE., Yvon K., Emerich H., Tetrahedral D., Inorg. Chem., 46, 2914 (2007).

[26] Denys RV., Riabov AB., Černý R., Koval’chuk IV, Zavaliy IYu., J. Solid State Chem., 187, 1 (2012).

[27] Yartys VA., Riabov AB., Denys RV., Sato M., Delaplane RG., J. Alloys Comp., 408, 273 (2006).

[28] Denys RV., Riabov AB., Yartys VA., Sato M., Delaplane RG., J. Solid State Chem., 181, 812 (2008).

[29] Guzik MN., Hauback BC., Yvon K., J. Solid State Chem., 186, 9 (2012).

[30] Buschow KHJ., Van Der Goot AS., J. Less-Comm Mat., 22, 419 (1970).

[31] van Vucht JHN., Kuijpers FA., Bruning HCAM., Philips Res. Rep., 25, 133 (1970).

[32] Young RA., Rietveld Method. In: Roung RA, editors. Introduction to the Rietveld Method, New York: Oxford University Press Inc, 1995, p. 1-38.

[33] Rodriguez-Carvajal J. In: Abstract of the Satellite Meeting on Powder Diffraction. Congress of the International Union of Crystallography. Toulouse, France, 1990, p.127; Fullprof Program, Version 3.5d October 98-LLB-JRC, 1998.

[34] Yuan HP., Zou ZY., Li ZN., Jiang LJ., Wang SM., Liu XP., et al., Int. J. Hydrogen Energy, 38, 7881 (2013).

[35] Naito K., Nastsunami N., Shukla AK., J. Power Sources, 63, 203 (1996).

[36] Notten PHL., Hokkeling P., J. Electrochem. Soc., 138, 1877 (1991).