Effect of Rare Earth Elements on the Structure and Electrochemical Properties of La0.63R0.2Mg0.17Ni3.1Co0.3 Al0.1 Alloy Electrodes
OPEN ACCESS
Abstract: Hydrogen storage allous $L a_{06}, R_{0,} M g_{017} N i_{3,1} C o_{0,3} A l_{0,1}(R=L a, C e, P r, N d, Y, S m, \text { Gd})$ based on $A_{2} B_{7}$ type were prepared by induction melting method The allous were ampealed at $1173 \mathrm{K}$ during a week in a sealed stainless steel tribe. The structure and the electro-electrochemical properties of the annealed alloys have been studied systematically by XRD, EPMA and electrochemical studies. The alloys structure consists mainly of $C e_{2} N i_{7}-t y p e\left(S G: P 6_{3} / m m c\right) L a_{2} N i_{7}$ phase as well as minor Gd $_{2} Co_{7}$-type $(S G: R-3 m)$ phase, LaNis $CaCu_5$-type, SG:P6/mmm phase. It is resulted that $L a_{0.65} Y_{0.2}$Mg$_{0.15}$Ni$_{3.1}$ Coo. $_{3} A l_{0.1}$ alloy exhibited the maximum electrochemical discharge capacity of 381.2 mAh·g-1. The best cycling stability was obtained with the $L a_{0.65} G d_{0.2} M g_{0.15} N i_{3.1} C O_{0.3} A l_{0.1}$ based alloy. This stability measured as the capacity retention rate at the 100th cycle (S100) was the highest for this sample (92.7%). The variation of the high rate discharge ability with the alloy composition. Its displayed a wave-like change. Firstly it increased from 24.5% (R = La) to 78.4% (R = Ce), then decreased to 14.4 % (R = Sm), and increased again to 63.8% with R = Gd.
Rare earth elements; Alloy structure; Unit cell volume; Equilibrium pressure; Electrochemical properties
This work was supported by the National Nature Science Foundation of China (No. 50941019) and Doctor Foundation of Binzhou University (2009Y02).
[1] Winter Carl-Jochen, Int. J. Hydrogen Energy, 29, 1095 (2004).
[2] Sakai T, Matsuoka, M, Iwakura, C. Handbook on the Physics and Chemistry of Rare Earths. In: Eyring L, editors. Rare earth intermetallics for metal-hydrogen batteries, Amsterdam: Elesvier; 1995, p.133-78.
[3] Feng F., Geng M., Northwood D.O., Int. J. Hydrogen Energy, 26, 725 (2001).
[4] Liu F.J., Suda S., J. Alloys Comp., 232, 232 (1996).
[5] Reilly JJ., Handbook of Battery Materials. In: Besenhard JO, editors. Metal Hydrides Electrode, New York: Wiley; 2000, p.239-68.
[6] Zhao XY., Ma LQ., Shen XD., J. Mater. Chem., 22, 277 (2012).
[7] Kadir K., Sakai T., Uehara I., J. Alloys Comp., 257, 115 (1997).
[8] Kadir K., Sakai T., Uehara I., J. Alloys Comp., 302, 112 (2000).
[9] Kohno T., Yoshida H., Kawashima F., Inaba T., Sakai I., Yamamoto M, et al., J. Alloys Comp., 311, L5 (2000).
[10] Zhang FL., Luo YC., Chen JP., Yan RX., Chen JH., J. Alloys Compd., 430, 302 (2007).
[11] Iwase K., Sakaki K., Nakamura Y., Akiba E., Inorg. Chem., 49, 8763 (2010).
[12] Chai YJ., Asano K., Sakaki K., Enoki H., Akiba E., J. Alloys Compd., 485, 174 (2009).
[13] Chai YJ., Sakaki K., Asano K., Enoki H., Akiba E., Kohno T., Scr. Mater., 57, 545 (2007).
[14] Ferey A., Cuevas F., Latroche M., Knosp B., Bernard P., Electrochim. Acta, 54, 1710 (2009).
[15] Hayakawa H., Akiba E., Gotoh M., Kohno T., Mater. Trans., 46, 1393 (2005).
[16] Nakamura J., Iwase K., Hayakawa H., Nakamura Y., Akiba E., J. Phys. Chem. C, 113, 5853 (2009).
[17] Nakamura Y., Nakamura J., Iwase K., Akiba E., Nucl. Instrum. Meth. A, 600, 297 (2009).
[18] Ozaki T., Kanemoto M., Kakeya T., Kitano Y., Kuzuhara M., Watada M. et al., J. Alloys Compd., 446, 620 (2007).
[19] Zhang QA., Fang MH., Si TZ., Fang F., Sun DL., Ouyang LZ. et al., J. Phys. Chem. C, 114, 11686 (2010).
[20] Zhang FL., Luo YC., Chen JP., Yan RX., Kang L., Chen JH., J. Power Sources, 150, 247 (2005).
[21] Zhang FL., Luo YC, Sun K, Wang DH, Yan RX, Kang L, et al., J. Alloys Compd., 424, 218 (2006).
[22] Zhang FL., Luo YC., Wang DH., Yan RX., Kang L., Chen JH., J Alloys Compd., 439, 181 (2007).
[23] Zhang J., Fang F., Zheng SY., Zhu J., Chen GR., Sun DL., et al., J. Power Sources, 172, 446 (2007).
[24] Denys RV., Yartys VA., Sato M., Riabov AB., Delaplane RG., J. Solid State Chem., 180, 2566 (2007).
[25] Filinchuk YE., Yvon K., Emerich H., Tetrahedral D., Inorg. Chem., 46, 2914 (2007).
[26] Denys RV., Riabov AB., Černý R., Koval’chuk IV, Zavaliy IYu., J. Solid State Chem., 187, 1 (2012).
[27] Yartys VA., Riabov AB., Denys RV., Sato M., Delaplane RG., J. Alloys Comp., 408, 273 (2006).
[28] Denys RV., Riabov AB., Yartys VA., Sato M., Delaplane RG., J. Solid State Chem., 181, 812 (2008).
[29] Guzik MN., Hauback BC., Yvon K., J. Solid State Chem., 186, 9 (2012).
[30] Buschow KHJ., Van Der Goot AS., J. Less-Comm Mat., 22, 419 (1970).
[31] van Vucht JHN., Kuijpers FA., Bruning HCAM., Philips Res. Rep., 25, 133 (1970).
[32] Young RA., Rietveld Method. In: Roung RA, editors. Introduction to the Rietveld Method, New York: Oxford University Press Inc, 1995, p. 1-38.
[33] Rodriguez-Carvajal J. In: Abstract of the Satellite Meeting on Powder Diffraction. Congress of the International Union of Crystallography. Toulouse, France, 1990, p.127; Fullprof Program, Version 3.5d October 98-LLB-JRC, 1998.
[34] Yuan HP., Zou ZY., Li ZN., Jiang LJ., Wang SM., Liu XP., et al., Int. J. Hydrogen Energy, 38, 7881 (2013).
[35] Naito K., Nastsunami N., Shukla AK., J. Power Sources, 63, 203 (1996).
[36] Notten PHL., Hokkeling P., J. Electrochem. Soc., 138, 1877 (1991).