Preparation of Micro/Nano-LiFePO4/C Cathode Material for Li-ion Batteries

Preparation of Micro/Nano-LiFePO4/C Cathode Material for Li-ion Batteries

G. Yang* F.P. Cai B. Jiang B. Wang S.Q. Hu C.H. Tan J.H. Gao H. Chen

Energy Research Institute of Shandong Academy of Sciences, Jinan, 250014, China

Corresponding Author Email:
17 July 2014
10 August 2014
26 November 2014
| Citation

LiFePO4/C composite with micro/nano structure was synthesized via controlled crystallization-dry mixing-carbon thermal reduction method. As prepared micro/nano LiFePO4/C composite show both excellent high-rate performance and high tap density as the cathode for lithium ion batteries. The tap density is 1.39 g·cm-3 while the discharge specific capacities of 148.9, 145.3, 143.3 and 132.6 mAh·g-1 are achieved at rates of 1 C, 2 C, 5 C and 10 C, respectively. This as-prepared micro/nano LiFePO4/C composite material is suitable for large-scale application, such as electric vehicles and plug-in hybrid electric vehicles.


LiFePO4; micro/nano; cathode

1. Introduction
2. Experimental
3. Results and Discussion
4. Conclusions
5. Acknowledgements

This work is supported by Natural Science Foundation of Shandong Province (Grant No.ZR2013BM023), Shandong Province Excellent Young Scientist Research Award Fund (Grant No.BS2012NJ010) and Jinan science and technology development plan (201402023).


[1] A.K. Padhi, K.S. Nanjundaswamy and J.B. Goodenough, J. Electrochem. Soc., 144, 1188 (1997).

[2] S.Y. Chung, J.T. Bloking and Y.M. Chiang, Nat. Materi., 1, 123 (2002).

[3] D. Wang, H. Li, S. Shi, X. Huang and L. Chen, Electrochim. Acta, 50, 2955 (2005).

[4] P.S. Herle, B. Ellis, N. Coombs and L.F. Nazar, Nat. Mater., 3, 147 (2004).

[5]Y.S. Hu, Y.G. Guo, R. Dominko, M. Gaberscek, J. Jamnik, Adv. Mater., 19, 1963 (2007).

[6] H. Liu, Q. Cao, L.J. Fu, C. Li, Y.P. Wu and H.Q. Wu, Electrochem. Commun., 8, 1553 (2006).

[7] I. Bilecka, A. Hintennach, M.D. Rossell, D. Xie, P. Novak and M. Niederberger, J. Mater. Chem., 21, 5881 (2011).

[8] M. Gaberscek, R. Dominko and J. Jamnik, Electrochem. Commun., 9, 2778 (2007).

[9] Y.G. Wang, Y.R. Wang, E. Hosono, K.X. Wang and H.S. Zhou, Angew. Chem., Int. Ed., 47, 7461 (2008).

[10] D. Choi and P.N. Kumta, J. Power Sources, 163, 1064 (2007).

[11] Y.G. Guo, J.S. Hu and L.J. Wan, J. Adv. Mater., 20, 2878 (2008).

[12] H. Yang, X.L. Wu, M.H. Cao and Y.G. Guo, J. Phys. Chem. C, 113, 3345 (2009).

[13] F.F. Cao, Y.G. Guo and L.J. Wan, J. Energy Environ. Sci., 4, 1634 (2011).

[14] M. Wang, Y. Yang and Y.X. Zhang, Nanoscale, 3, 4434 (2011).

[15] J. Su, X.L. Wu, C.P. Yang, J.S. Lee, J. Kim and Y.G. Guo, J. Phys. Chem. C, 116, 5019 (2012).

[16] G. Yang, C.Y. Jiang, X.M. He, J.R. Ying, J. Gao and C.R. Wan, J. New Mat. Electrochem. Systems., 15, 75 (2012).

[17] Z. Chen and J.R. Dahn, J. Electrochem. Soc., 149, A1184 (2002).