OPEN ACCESS
A Si@C nanocomposite material is prepared via in-situ polymerization of acrylonitrile on the surface of silicon nanoparticles, and followed by carbonization in an inert atmosphere. The obtained Si@C nanocomposite material is composed of a nanosized Si core and a casting carbon shell. Its structure and electrochemical properties are characterized by XRD, TG, Raman, SEM, TEM and chargedischarge performance test. The results obtained in this study show that Si@C nanocomposite is coated by a layer of amorphous carbon which provides a conductive matrix and relieves the dramatically morphological changes of Si upon lithium insertion and extraction. The composite exhibits good capacity retention for use as anode in lithium-ion batteries. This study also paves a facile and industrial scalable way to prepare core/shell structure for high performance anode materials for lithium-ion batteries
in-situ; polymerization; silicon-carbon composite; anode material; lithium-ion battery
We gratefully thank the Ministry of Science and Technology (Grant No. 2013CB934000, No. 2011CB935902, No.2014DFG71590, No. 2010DFA72760, No. 2011CB711202, No.2013AA050903, No. 2011AA11A257 and No. 2011AA11A254), the China Postdoctoral Science Foundation (Grant No.2013M530599 and No. 2013M540929), the Tsinghua University Initiative Scientific Research Program (Grant No. 2010THZ08116, No. 2011THZ08139, No. 2011THZ01004 and No. 2012THZ08129) , Beijing Municipal Program (Grant No.YETP0157, No. Z131100003413002 and No. Z131100003413001) , State Key Laboratory of Automotive Safety and Energy (No.ZZ2012-011) and Suzhou (Wujiang) Automotive Research Institute (Project No.2012WJ-A-01).
[1] J.M. Tarascon, M. Armand, Nature, 414, 359 (2001).
[2] A.S. Arico, P. Bruce, B. Scrosati, J.M. Tarascon, W. Schalkwijk, Nat. Mater., 4, 366 (2005).
[3] M. Armand, J.M. Tarascon, Nature, 451, 652 (2008).
[4] N.S. Ergang, J.C. Lytle, K.T. Lee, S.M. Oh, W.H. Smyrl, A. Stein, Adv. Mater., 18, 1750 (2006).
[5] A.M. Cao, J.S. Hu, H.P. Liang, L.J. Wan, Angew. Chem. Int. Ed., 44, 4391 (2005).
[6] H.S. Zhou, D.L. Li, M. Hibino, I. Honma, Angew. Chem. Int. Ed., 44, 797 (2005).
[7] C. Jiang, E. Hosono, H.S. Zhou, Nano Today, 1, 28 (2006).
[8] G. Armstrong, A.R. Armstrong, P.G. Bruce, P. Reale, B. Scrosati, Adv. Mater., 18, 2597 (2006).
[9] P. Poizot, S. Laruelle, S. Grugeon, L. Dupont, J.M. Tarascon, Nature, 407, 496 (2000).
[10] S. Fang, Y. Tang, X. Tai, L. Yang, K. Tachibana, K. Kamijima, J. Power Sources, 196, 1433 (2011).
[11] S.C. Nam, Y.S. Yoon, K.S. Yun et al, J. Electrochem. Soc., 148 (3), A220 (2001).
[12] Y. Idota, T. Kubota, A. Matsufuji, Y. Maekawa, T. Miyasaka, Science, 276, 1395 (1997).
[13] Y.N. Li, S.L. Zhao, Q.Z. Qin, J. Power Sources, 114, 113 (2003).
[14] Y. Cui, Z. Zhong, D. Wang, W.U. Wang, C.M. Lieber, Nano. Lett., 3, 149 (2003).
[15] L.F. Cui, Y. Yang, C.M. Hsu, Y. Cui, Nano. Lett., 9, 3370 (2009).
[16] Z.S. Wen, J. Yang, B.F. Wang, K. Wang, Y. Liu, Electrochem. Commun., 5, 165 (2003).
[17] K.L. Lee, J.Y. Jung, S.W. Lee, H.S. Moon, J.W. Park, J. Power Sources, 129, 270 (2004).
[18] J.O. Besenhard, J. Yang, M. Winter, J. Power Sources, 68, 87 (1997).
[19] M.W. Verbrugge, Y.T. Cheng, Electrochem. Soc. Trans., 13, 127 (2008).
[20] H. Wu, Y. Cui, Nano. Today, 7, 414 (2012).
[21] M.W. Verbrugge, Y.T. Cheng, J. Electrochem. Soc., 156, A927 (2009).
[22] A.R. Kamali, D.J. Fray, J. New Mater. Electrochem. Systems, 13, 147 (2010).
[23] W.J. Zhang, J. Power Sources, 196, 13 (2011).
[24] H. Li, X. Huang, L. Chen, Z. Wu, Y. Liang, Electrochem. Solid-State Lett., 2, 547 (1999).
[25] J. Graetz, C.C. Ahn, R. Yazami, B. Fultz, Electrochem. Solid-State Lett., 6, A194 (2003).
[26] J. Shu, H. Li, R. Yang, Y. Shi, X. Huang, Electrochem. Commun., 8, 51 (2006).
[27] T. Jiang, S.C. Zhang, X.P. Qiu, W.T. Zhu, L.Q. Chen, Electrochem. Commun., 9, 930 (2007).
[28] L.F. Cui, R. Ruffo, C.K. Chan, H. Peng, Y. Cui, Nano. Lett., 9, 491 (2009).
[29] Y. Yao, M.T. McDowell, I. Ryu, H. Wu, N. Liu, L.B. Hu, W.D. Nix, Y. Cui, Nano. Lett., 11, 2949 (2011).
[30] T. Song, J. Xia, J.H. lee et al., Nano. Lett., 10, 1710 (2010).
[31] Z.B. Zhou, Y.H. Xu, M. Hojamberdiev, W.G. Liu, J. Wang, J. Alloys and Compounds, 507, 309 (2010).
[32] Q. Si, K. Hanai, T. Ichikawa, A. Hirano, N. Imanishi, Y. Takeda, O. Yamamoto, J. Power Sources, 195, 1720 (2010).
[33] S.H. Ng, J. Wang, D. Wexler, K. Konstantinov, Z.P. Guo, H.K. Liu, Chem. Int. Ed., 45, 6896 (2006).
[34] W.R. Liu, J.H. Wang, H.C. Wu, D.T. Shieh, M.H. Yang and N.L. Wu, Electrochem. Soc., 152, A1719 (2005).
[35] M.M. Titirici, A. Thomas, M. Antonietti, Adv. Funct. Mater, 17, 1010 (2007).
[36] J. Yang, B.F. Wang, K. Wang, Y. Liu, J.Y. Xie and Z.S. Wen, Electrochem. Solid-State Lett., 6, A154 (2003).
[37] A.M. Wilson, J.R. Dahn, J. Electrochem. Soc., 142, 326 (1995).
[38] T. Umeno, K. Fukuda, H. Wang, N. Dimov, T. Iwao, M. Yoshio, Chem. Lett., 1186 (2001).
[39] G.X. Wang, J.H. Ahn, Janeyao, Electrochem. Commun., 6, 689 (2004).
[40] A.C. Ferrari, J. Robertson, Phys. Rev. B, 61, 14095 (2000).
[41] P.F. Gao, J.W. Fu, J. Yang, R.G. Lv, J.L. Wang, Y. Nuli, X.Z. Tang, Phys. Chem. Chem. Phys., 11, 11101 (2009).
[42] S.L. Chou, J.Z. Wang, M. Choucair, H.K. Liu, J.A. Stride, S.X. Dou, Electrochem. Commun., 12, 1303 (2010).